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1 MATHEMATICAL PHYSICS By Pika and Owen

Part I: Theory

1 Mathematical Physics

1.1 Basic Set Theory

A set is any collection of distinct objects, considered as an object in its own right. The objects in a set

can be anything like real numbers R. We denote a set by curly braces:
A = {al,a2,a3,...}

where a1, as,as, ... are elements of the set A. We define several common operations on sets:

o Union: The union of two sets A and B is the set of all elements that are in either A or B (or both).

Denoted as:

AUB={z|x€Aorz e B}

o Intersection: The intersection of two sets A and B is the set of all elements that are in both A
and B. Denoted as:
ANB={z|x € Aand x € B}

» Difference: The difference of two sets A and B, denoted A \ B, is the set of all elements that are
in A but not in B:
A\B={z|z € Aand = ¢ B}

o Complement: The complement of a set A, denoted A€, is the set of all elements not in A.

A=Az | ¢ A}

We say that a set A is a subset of a set B, denoted A C B, if every element of A is also an element of B:

ACB if Ve(r€e A = z € B)

a"'-_.

il
F A
Fas N =
i [
)

where V means for all. Conversely, B is a superset of A, denoted B 2 A, if every glement OfA"lsglﬁf‘ "
g8 - I*.' d I

Page 15 / (] '1f



1 MATHEMATICAL PHYSICS By Pika and Owen

1.2 Function

A function is a relationship between two sets, where each element of the first set (called the domain) is
associated with exactly one element of the second set (called the codomain). A function assigns a unique

output to every input from the domain. Formally, a function f from a set A to a set B is denoted as

f:A—B

where A is the domain of the function, B is the codomain of the function. For each a € A, there exists
a unique b € B such that f(a) = b. There are several important types of functions that are commonly

used in mathematics. Below are some of the most important ones:

o A function f: A — B is called one-to-one or injective if distinct elements in the domain A map

to distinct elements in the codomain B. In other words:

f(z1) = f(xe) = x1 =29 forall zy,20 € A

o A function f: A — B is called onto or surjective if for every element b € B, there exists at least

one element a € A such that f(a) = b. In other words, the range of f is the entire codomain B.

o A function f : A — B is called bijective if it is both injective (one-to-one) and surjective (onto).
This means that every element of the domain is mapped to a unique element in the codomain, and

every element of the codomain has a corresponding element in the domain.

1.3 Trigonometry

Definition. 1.1: Trigonometric Function

Consider a right triangle with an angle 6, opposite side O, adjacent side A, and hypotenuse H.
Recall that
C
Hypotenuse H
P Opposite O
0
A B
Adjacent A

Page 16 /



1 MATHEMATICAL PHYSICS By Pika and Owen

For the angle # in a right triangle:

) Opposite 0] H
sinf = ——— = —,  cscl=—
Hypotenuse H @)
0 Adjacent A 0 H
cos = —— = —, secl = —
Hypotenuse  H’ A

Opposite O A

tanf = ——— = — t0 = —

an Adjacent A’ « O

Definition. 1.2: Degree

Degrees are often divided into smaller units for more precise measurements. The most common

smaller units are minutes and seconds:
1 degree (°) = 60 minutes (’)

1 minute (’) = 60 seconds (”)

Definition. 1.3: Radian

A radian is defined as the angle subtended at the center of a circle by an arc whose length is equal

to the radius of the circle:
g="
r
where
o 6 is the angle in radians,
o s is the length of the arc, and

e 71 is the radius of the circle.

Radians are closely related to degrees, but they are more natural for mathematical calculations. The

relationship between radians and degrees is given by the following conversion formulas:

180
Qdegrees = gradians X T

™

eradians = gdegrees X @

Page 17 /
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1.4 Logarithm

Recall that

logpx =y <= bW ==z

Definition. 1.4: Natural Number e
1 n
e = lim (1 + —)
n—oo n

1 n
which is <1 + —> when n — oco.
n

Define natural logarithm log, « by In. Note that
1. In(xy) =lnzx +Iny

2. In (£> =lnzx —Iny
Y

3. In(z") =nlnz

1.5 Summation

The summation symbol Z is used to denote the sum of a sequence of numbers:

Zai:al-l-ag—f—----l—an
i=1

Einstein summation notation is a compact and powerful way to write sums over indexed quantities in
tensor calculus. Instead of writing explicit summation signs, repeated indices in a term imply a sum over
all values of that index. If an index appears twice in a single term (once as an upper index and once as
a lower index, or in the same position in Euclidean space), it is implicitly summed over all its possible

values:

=1

Example. For two vectors u,v € R?, the dot product can be written using Einstein notati )

3
u-v=uv = E U;V;
i=1
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1.6 Conic Section

A conic section is the curve obtained by intersecting a plane with a double-napped cone. The general

form of the equation of a conic section in Cartesian coordinates is

Ar? + Bay+Cy* + Dax+Ey+ F =0

where A, B, C, D, E, and F are constants that define the shape and orientation of the conic.

Conic Section Equation and Properties

Circle Equation: (z — h)*> + (y — k)* = r?
Center: (h, k)

Radius: r

@=1? =P

a? b2 =1

Ellipse Equation:
Center: (h, k)
Semi-major axis: a, Semi-minor axis: b

Orientation: If @ > b, major axis along x-axis; if b > a, major axis along y-axis

Parabola Equation: y — k = a(x — h)?
Vertex: (h, k)

Axis: Vertical

— h)? —k)?
Hyperbola Equation: (@ 5 ) — y ) =1
a b?

Center: (h, k)

Transverse axis along z-axis, Conjugate axis along y-axis

Table 1: Different Conic Sections and Their Properties

1.7 Dimensional Analysis

1.7.1 Introduction . . 2y
e VAR 4
Dimensional analysis is used to YO N\ <
= O\ <
\h// ) {’§>
o
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o check the consistency of equations, and

o predict how different physical quantities relate to one another.
In essence, it is based on the idea that any physical quantity can be expressed in terms of a few fundamental
dimensions, such as:

[M] (mass), [L] (length), [T (time), [I] (electric current), [©] (temperature)

Every valid physical equation must be dimensionally homogeneous, meaning all additive terms must
have the same dimensions.

Consider Newton’s second law:

The dimensions are:

F) = [MLT™), [m]=[M], [a]=[LT"

Since [F] = [m][a], the equation is dimensionally consistent.

1.7.2 Buckingham Pi Theorem (Optional)

Given a physical relation described by:

f(Q1,Q2,...,Qn) =0

where (); are the n physical variables, and these n variables involve k independent fundamental dimensions,

the equation can be rewritten as a function of (n — k) independent dimensionless II groups:
F(Hl,Hg, .. -aHn—k’) = 0
Each II group is a dimensionless product of the original variables raised to some powers:

1= Q{Q505 ...

o
,:—u

Example. Find the dimensionless relation for the drag force Fp on a sphel}e in 2 ffuld'; consgerlng

diameter D, fluid velocity V', fluid density p, g, and fluid dynamic viscosity p with dlmensnon, [ML’J'Z'}]

J

Solution. Note that n = 6 and k = 3 so number of pi terms p = 3 so we expect 3_d1men310nless gr(“)ups
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Choose Repeating Variables (k = 3): D, V and p (which are dimensionally independent and cover M, L

and T). Then

Solving,

This is related to the drag coefficient Cp.

Solving,

where Re is the Reynolds number.

Solving,

I, = Fp - D*V°p°

Fp

M= —2
SVENE

I3 =g-DV’*

_ gD

0 = T

This is the inverse of the Froude number (Fr) squared.

F(Cp,Re, Fr) =0 = Cp = f(Re, Fr)

1.7.3 Natural Unit

In physics, natural units are systems of units in which certain fundamental physical constants are set equal

to 1. The most commonly used ones set the following fundamental constants to 1:

e & (The reduced Planck’s constant)
e ¢ (The speed of light in vacuum)

o G (The gravitational constant)

o kp (Boltzmann constant)

e ¢y (The permittivity of free space)
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Dimensional analysis is used to restore the correct physical dimensions of quantities when transitioning
between different unit systems.

Example. In natural units, the famous equation of mass-energy equivalence is given by
E=m

where E' is energy and m is mass. However, in standard units, energy and mass have different dimensions.
Energy is measured in joules (J) with the dimensions [M L*T~?], while mass is measured in kilograms (kg)
with the dimension [M].

Using dimensional analysis, we restore the correct relationship by introducing the speed of light ¢. The

energy and mass are related by the equation:

E = md?

Here, ¢ (speed of light) has the dimension of [LT~']. Now the dimensions of both sides match because
(] = [MI*T),  [me?] = [M)[L*T2)
Hence, the restored equation in standard units is
E =mc

1.7.4 Exercise

The Planck unit system includes the following fundamental quantities: Planck Length (Ip), Planck Time
(tp), Planck Mass (mp), Planck Charge (¢p), Planck Temperature (7p), Planck Energy (Ep), Planck
Force (Fp) and Planck Power (Pp). Each of these units is derived from combinations of the fundamental

constants:

» The speed of light (c¢)

« The gravitational constant (G, with [G] = [M'L*T?))

« Planck’ s constant (h = h/27, with [h] = [ML*T 1)) {,;:-\ r

« Coulomb constant (ey. with [e] = [ML*T*17?)) LY N YOS %

« Boltzmann constant (kp, with [M L*T~?07!]) W O\ oD
r \ @
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Derive each of the quantities above.

1.8 Tensor

1.8.1 Vector and Vector Space

Definition. 1.5: Vector
A vector (denoted by an arrow above the letter (A) or by a boldface letter (A)) is a mathematical
object that has both a magnitude (denoted by |A| or A) (size or length) and a direction. This is in

contrast to a scalar, which only has magnitude (e.g., temperature, mass).

Definition. 1.6: Unit Vector
A unit vector (@) has a magnitude of 1 and defines direction. The standard Cartesian unit vectors
are i, j, k along the x,y, and z axes, respectively. A vector A in 3D space can be expressed in terms

of its Cartesian components (A,, A,, A.):

A=Aji+Aj+ Ak

Theorem. 1.1: Tail-to-tail Method
The sum of two vectors can be visualized as the diagonal of a parallelogram formed by the two

vectors placed tail-to-tail:

Definition. 1.7: Dot Product

Given that angle between two vectors is 0. If A = (A4,, A,, A,) and B = (B,, By, B.), then

A -B=|A||B|cos(d) = A, B, + A,B, + A.B,
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Theorem. 1.2: Projection

The projection of a onto b is given by the following formula:

a-b

“—b
[b?

proj,a =

Example. The effective area Az of a surface can be defined as the projection of the surface area in the
direction of a particular vector. If A is a vector representing the surface area and v is a unit vector in the

direction of interest, the effective area is given by the dot product:
Ag=A-0

where

o A is the vector representing the surface area (with magnitude representing the area and direction

perpendicular to the surface),
e 0 is the unit vector in the direction of interest, and

o A.q is the projection of the area in the direction of 0.

Definition. 1.8: Cross Product

Given that angle between two vectors is 6. If A = (A,,A,, A,) and B = (B,, By, B,), then the

component form of cross product is given by

i j k
AXB=|q ay as| = (azbs—azby)i— (aibs —azb1)j+ (a1bs — azby)k

bl b2 b3

and the vector form of cross product is given by

A x B = |A||B]| sin(0)n

where n is a unit vector perpendicular to the plane formed by a and b, and its direction is given by

the right-hand rule.
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Example. Given two vectors a and b, which form two sides of a triangle, the area A of the triangle is

half the magnitude of the cross product of a and b. Mathematically, the area is given by

A:%hxm

A vector space V over a field F (e.g., R or C) is a set of vectors equipped with two operations:

e Vector addition: +:V xV =V

e Scalar multiplication: - :F xV — V
satisfying the following axioms for all u,v,w € V and scalars «, 5 € F:

« Associativity of addition: (u+v)+w=u+ (v+w)

o« Commutativity of addition: u+v=v+u

« Existence of zero vector: There exists 0 € V such that v+0=1v

» Existence of additive inverse: For each v € V| there exists —v € V such that v+ (—v) =0

« Compatibility of scalar multiplication: «a(5v) = (af)v

o Identity element of scalar multiplication: 1-v=v

« Distributivity over vector addition: a(u+v) = au+ av

« Distributivity over scalar addition: (« + f)v = av + (v

1.8.2 Matrix

Definition A matrix is an ordered rectangular array of numbers arranged in m rows and n columns.

A matrix is typically denoted as A, and its elements are written as a;;, where ¢ is the row index and j is
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the column index.

aix Q2 - Qip

Q21 Q22 -+ Ay
A=

Am1 Am2 - Omp

Here, A is an m X n matrix (with m rows and n columns).

Matrix Multiplication Matrix multiplication is defined as the dot product of rows of the first matrix
with columns of the second matrix. If A is an m X n matrix and B is an n X p matrix, then their product

C = AB is an m x p matrix, and its elements are given by

n

Cij = Z @by

k=1

Scalar Multiplication A matrix A can be multiplied by a scalar A (a number), which scales all the

elements of the matrix:

)\CLH )\0,12 ce )\aln

Aagr  Aage -+ Aagy
ANA =

A1 A2+ A

Determinant of a Matrix For a 2 x 2 matrix

a b

the determinant is computed as

det(A) = ad — bc

Page 26 /




1 MATHEMATICAL PHYSICS By Pika and Owen

For larger matrices, the determinant can be computed using cofactor expansion. The determinant of an

n X n matrix A is given by
n

det(A) = Z(_l)i+jaij det(Ajj)

j=1
where A;; is the matrix obtained by removing the i-th row and j-th column of A, and a;; is the element

in the i-th row and j-th column.

Inverse of a Matrix

Definition. 1.10: Minor, Cofactor and Adjoint

Let A = (a;;) be an n x n matrix. The minor M;; of the entry a;; is the determinant of the
(n — 1) x (n — 1) matrix obtained by deleting the i-th row and j-th column of A.
The cofactor Cj; of a;; is defined by

Ciyj = (1) My

Let A be an n X n matrix.

The adjoint (or adjugate) of A, denoted by adj(A), is given by

adj(A4) = (Cji)1<ij<n

Definition. 1.11: Inverse Matrix

Let A be an n X n matrix. A matrix B is called the inverse of A if

AB=BA=1,

where [, = is a n X n matrix. If such a matrix exists, A is called invertible and

00 --- 1
the inverse is denoted by A~
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Theorem. 1.3: Existence of the Inverse

An n x n matrix A is invertible if and only if det A # 0.

Theorem. 1.4: Inverse via the Adjoint

If Ais an n x n matrix with det A # 0, then

1
1 a
= dj(A
det A adj(4)
1.8.3 Tensor
Basis For a vector space V', a set of vectors {by,bs,...,b,} is a basis of V if

e Linear Independence: No vector in the set can be written as a linear combination of the others.

e Spanning: Every vector in V' can be expressed as a linear combination of the basis vectors.

Example.
1 0
B = € = , €2 =
0 1
x
is a basis for R? because the vectors are linearly independent, and any vector v = € R? can be
Y
written as

V = 1€ + yey

Change of Basis Let V be a vector space, and let B = {by,bs,...,b,} be a basis for V. A vector ve V

can be written as a linear combination of the basis vectors:

V261b1+62b2+"‘+0nbn

where ¢y, co, ..., ¢, are the coordinates of v with respect to the basis B. These coordinates

form the coordinate vector [v]g of v in the basis B.

Consider two bases:

B: {bl,bz,...,bn}
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and

B' = {b},bj,....b)}

Let v be a vector in V. The goal is to express the coordinate vector [v]sz of v with respect to the new
basis B'. To do this, we need to find the relationship between the two coordinate systems. Suppose the

new basis vectors b are expressed as linear combinations of the old basis vectors b;:
n
b; = E :Pmb]
=1

where P = [P,;] is the change of basis matrix that transforms the old basis B to the new basis B'.
C1

Co
Then, if v has coordinates [v|p = in the basis B, its coordinates [v]p in the new basis B’ can be

Cn

computed as:

where P! is the inverse of the change of basis matrix.

Tensor A tensor is a mathematical object that generalizes scalars, vectors, and matrices. It can be
thought of as a multi-dimensional array of numbers that transforms according to certain rules under a
change of coordinates.

The order (or rank) of a tensor refers to the number of indices needed to describe it:

e A scalar is a tensor of order 0.
e A vector is a tensor of order 1.
e A matrix is a tensor of order 2.

o A general tensor may have order 3, 4, or higher, depending on the number of indices.

The components of a tensor are typically denoted with indices. For example, a second-order tensor 7" with

| 2

components T;; can be written as:

Tll T12
T —

T21 T22

Page 29 /




1 MATHEMATICAL PHYSICS By Pika and Owen

Contravariant Tensor A contravariant tensor has components that transform in a certain way when
we change the coordinates. Specifically, the components of a contravariant tensor transform according to
the inverse of the transformation matrix. Let T be a contravariant vector. When we change coordinates,

the components 7" transform as:
o ij
T =) AT
J

where A; is the transformation matrix for the new coordinates. In index notation, the upper index
(superscript) indicates that the tensor is contravariant.
For example, consider a contravariant vector v = (v',v?). Under a change of coordinates, the components

transform as

v = Afot 4 Ab? 0 = A%t Ad?

Covariant Tensor In contrast, a covariant tensor has components that transform differently. The
components of a covariant tensor transform according to the transformation matrix itself. Let S be a

covariant vector. Under a change of coordinates, the components S; transform as
Si=> " AlS,
J

where A7 is the transformation matrix for the new coordinates. In index notation, the lower index (sub-
script) indicates that the tensor is covariant. For example, consider a covariant vector w = (wy, ws). Under

a change of coordinates, the components transform as
/ 1 2 / 1 2

1.8.4 Scalar Field and Vector Field

Definition. 1.12: Scalar Field

A scalar field is a mathematical function that assigns a scalar value to every point in a space. It
is represented as

¢:R" >R, x> ¢(x)

where R" is the space in which the field is defined, and ¢(x) is a scalar value at the point x.

point x, then T is a scalar field.
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Definition. 1.13: Vector Field

A vector field is a function that assigns a vector to every point in a space. It is represented as

V:R"—>R", x~ V(x)

where V(x) is the vector field at point x, and R" is the space in which the vector field is defined.

Exercise. (2020 GeCAA)
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In the following problem, the fluid mechanics of Jupiter’s Great Red Spot (GRS) is studied based on the
velocity field data. The diagram above shows a map of relative velocity for GRS and the surrounding
region. The arrows are oriented and scaled as per the directions and magnitudes of winds at different
points. Due to the combined effects of gravity and rotation, Jupiter is slightly flattened at its poles. The

equation of a spheroid approximating for the shape of Jupiter can be stated as:

2 2
$_+y_:1
R2 ' R?

where R, = 7.15 x 107 m is the equatorial radius of Jupiter, and R, =6.69 x 107 m the polar radius. The
R,

radii of curvature of this spheroid in any direction can be calculated by the following equatioﬁs";(?e =

7(¢) = Re(1 + € tan? ¢)'/?
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where 7(¢) and R(¢) are the zonal (aka the zone of a particular latitude) and meridional (aka longitudinal)

radii of curvature, respectively, as a function of planetographic latitude ¢. The sidereal rotation period of

Jupiter is P = 3.57 x 10% s.

(a)

Calculate the zonal and meridional radii values (7 and R) respectively at the location of the centre

of the GRS.
Estimate the eccentricity of the GRS.

"Vorticity’ at any point is a measure of local spinning of the fluid as measured by an observer situated
in the reference frame of the fluid. Mathematically, it is calculated as ’curl’ (vector derivative
product) of the velocity field. In this case, the average relative vorticity may be estimated by the

equation:

B Vo
LarsAcrs

where V,, is the maximum value of winds as per the velocity field, Lggrs is the length of the circum-
ference of the GRS and Aggrg is the area of the GRS. Estimate average relative vorticity of the GRS.
Hint: The circumference of an ellipse is well approximated by an average of circumferences of the

corresponding auxiliary and minor circles.

Find the absolute vorticity ¢, = (¢ + f) by adding the Coriolis parameter:
f=2Qsin¢

where € is the angular velocity of Jupiter (due to axial rotation) and ¢ is the appropriate latitude.

If the absolute vorticity has the same sign as the latitude, we call the storm a ’cyclonic storm’. If

they have opposite signs, the system is "anticyclonic’. Is the GRS cyclonic or anticyclonic?

Imagine that the GRS moves to another latitude ¢;, where the absolute vorticity changes the sign
(changes from anti-cyclonic to cyclonic or vice versa). Assuming minimum possible displacement of
the GRS, at what value of ¢; do we expect this change?

In your analysis, assume that the GRS at the new location would occupy the same angular span in

e
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i e
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latitude, as well as have the same wind velocities and eccentricity as the original.
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1.9 Differentiation and Partial Differentiation

1.9.1 Introduction

Differentiation is used for functions of a single independent variable, y = f(z). It measures the instaneous

rate of change of y with respect to x. The derivative of a function f(z) with respect to z is defined using

df

a limit and is denoted by 77 O I ().

% = Algicrgo flz+ AA:E; — /(@) (First principle)
Y
Ay
slope = Ar
(z+ Az, f(z + Ax))
(. /(@) | |
I I T

Figure 1: Differentiation is the slope when Az — 0

1.9.2 Properties and Formula

Definition. 1.14: Basic Properties

If f(x) and g(z) are differentiable functions (the derivative exists), ¢ and n are any real numbers,

(cf) =cf'(x) d%(c) —0
(f£9) = fl(z) L4 () %(m”) = nx" L (Power Rule)
(f9) = f'g+ f¢’ (Product Rule) d ) , )
N fa—fd 7 (F(9(2))) = f(g(2))g'(z) (Chain Rule)
(§> = % (Quotient Rule)
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Definition. 1.15: Formulas

%(x)—l %(cscx)——cscxcotx @(a )=a"ln(a), a >0
d

E(sin x) = cosz %(cot z) = —csc’z @(e“) ="
d d, ., 1 d 1
B — —gj —(sin— = —— B l = —
dw(cosa:) sin dx(sm ) i dx(n(x)) o B 0

1 d 1
—(tanx) = sec’ x —(COS_l x) - - —(111|37|) =—,z#0
dl‘ dm '/1_.’,52 d €T

1

a(secx) = secx tanx %(tan_l ) = - _:ﬂ d—(bga(x)) = Thma ¥ 0

1.9.3 Partial Differentiation

Partial differentiation is used for functions of two or more independent variables, such as z = f(z,y).
A partial derivative measures the rate of change of the function with respect to one variable, while

z
— is the derivative with respect to x while

ox

holding all other variables constant. For example,
keeping y constant.

Example. Consider the function

fla,y) =2y +e™

0
g (1:2y + emy) = 2zy + ye*?
x

1.9.4 Numerical Analysis

Definition. 1.16: Bisection Method

Let the function f(x) be continuous on the interval [a,b], and suppose that f(a) and f(b) have
opposite signs, i.e.,

fla)- f(b) <O

The root r lies between a and b, and we can approximate the root by iteratively halving the interval.

The midpoint m of the interval is given by

We then check the sign of f(m):
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o If f(m) =0, then m is the root.
o If f(a)- f(m) <0, the root lies between a and m, so we set b = m.
o If f(m)- f(b) <0, the root lies between m and b, so we set a = m.

This process is repeated until the interval becomes sufficiently small.

Example. To find the root of f(z) = 2> — 2 on the interval [1,2]:
e f()=12-2=—1
. f(2)=22-2=2

« Since f(1)- f(2) < 0, the root lies in [1,2].

142
o First approximation: m; = % = 1.5.

e f(1.5) =1.5* =2 =0.25. Since f(1)- f(1.5) < 0, the new interval is [1, 1.5].

Definition. 1.17: Newton—-Raphson method

Let f(x) be a differentiable function, and let xy be an initial guess for the root. The next approxi-

mation x; is given by

f(x0)
f'(x0)

1 = Ty —

The method continues iteratively:

n

Example. To solve f(r) = 2* — 2 = 0, we find the derivative f'(r) = 2. Using an initial guess o = 1.5:

o T3 —2
1= 2o 90
152 — 2
— 15— 2 %~ 14167
xl 2(1.5)
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1.9.5 Linear Approximation

To find the linear approximation, we begin by recalling the definition of the tangent line to a curve at a

point. The equation of the tangent line at x = a is

y=[(a)(z —a)+ f(a)

which provides the best linear approximation to the function near x = a:

f(@) = f(a) + f'(a)(z — a)
Example. sinx ~ z for small x in radian.

1.9.6 Taylor’s Series

The Taylor Series of a function f(x) about a point a is given by

f(a)
31

f"(a)

) (—a)+-

f(x) = fla) + f(a)(x — a) + (z—a)*+

where f™(z) is the n-th derivative of f(z).

Example. Consider the function f(z) = e”. The derivatives of e* are
fla)y=e f'a)=¢", [O)=e¢,
Evaluating these at z = 0, we get
fOy=1, fO)y=1, f0)=1, f™0)=1foraln

Hence, the Taylor series of ¢® around x = 0 (also known as the Maclaurin series) is

2 1.3 iL'4

F=l4rt+
2030 40
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1.9.7 First Derivative Test

Definition. 1.18: Critical Point

Let f(x) be a function that is differentiable on an interval containing ¢, except possibly at ¢ itself.

Critical points of f are points ¢ where either f'(¢) =0 or f'(c) does not exist.

Theorem. 1.5: First Derivative Test

Suppose c is a critical point of a function f.

o If f'(x) >0 for z < cand f'(z) <0 for x > ¢, then f has a local maximum at c.
o If f'(x) <0 for z < cand f'(z) >0 for x > ¢, then f has a local minimum at c.

o If f’(x) has the same sign on both sides of ¢, then f has no local extremum at c.

J

Example. (2025 IOAA) The Event Horizon Telescope (EHT) has released an image of the supermassive
black hole at the centre of the M87 galaxy, as shown in the left panel of Fig. E To understand some simple
features of this image, we consider a simplified model of a non-rotating, static, spherically symmetric black

hole of mass

M = 6.5 x 10°M

surrounded by a massless, thin, planar accretion disk of inner and outer radii
Qinner = 6RSC: Gouter = ]-ORSC

respectively, where Rgc is the Schwarzschild radius. A face-on view sketch of this system is shown in the

right panel of Fig. E (The figure is not to scale.)

\I

Figure 2: Left: EHT image of the black hole at the centre of MS&7.
a black hole surrounded by a thin accretion disk.
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We assume that the accretion disk is the only source of light to be considered. Every point on the disk
emits light in all directions. This light travels under the influence of the gravitational field of the black
hole. The path of the light rays is governed by the following two equations (which are similar to those

describing the motion of an object around the Sun):

1, I? 2GM
— — (1 - =F 1
2Ur+ 2r2 < c2r > (1)
L
= = — 2
Vy = TW . (2)

where r € (Rgc, 00) is the radial coordinate, ¢ € [0, 27) is the azimuthal angle, and E and L are constants

r
related to the conserved energy and conserved angular momentum, respectively. Here, v, = pm is the

magnitude of the radial velocity, vy4 is the magnitude of the tangential velocity, and w = o is the angular

velocity. We define the impact parameter b for a trajectory as

Time dilation effects are neglected in this problem. Another useful equation is obtained by differentiating

the first equation with respect to time:

d L? MIL?
o L 3GMET_ (3)

dt 73 c2rd

(a) Circular light trajectories can exist around the black hole. Find the radius 7, and the impact

parameter by for such photon trajectories in terms of M and relevant constants.
(b) Calculate the time T, taken to complete one full orbit of the circular light trajectory, in seconds.

(c¢) The radial velocity equation for light trajectories can be compared with an equation of the form

2

é + ‘/eff(T) =F (4)

A schematic plot of Vog/L? as a function of r is shown in the following figure. The plot_indi€ates two

special radii, ro and rg. Obtain expressions for 7, and 74 in terms of M and relevant @onstants:

s
,,( o

i }
,-.-- . ; lj .cll
f -
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T I ra T

1.10 Integration

1.10.1 Primitive Function and Indefinite Integration

The primitive function (or antiderivative) of a given function f(z) is a function F'(z) such that

Example. Let f(z) = 2z. The corresponding primitive function F'(x) is
F(x)=2>+C

where C'is a constant, called the constant of integration. This constant appears because the derivative of
any constant is zero, and thus there are infinitely many functions that differ only by a constant.
The indefinite integral of a function f(z) is the operation of finding its primitive function. It is written

as

/f(:v)dsz(:c)—l—C

Some important properties of indefinite integrals include

Theorem. 1.6: Properties

o Linearity:

Jt@+g@ydo= [ 1@)do+ [ gla)ds

/cf(x)dx:c/f(x)da:

« Constant factor:

where c is a constant.
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Theorem. 1.7: Basic Primitive Function

e Power Rule:

xn-l-l
/x"dx: m +C for n# -1

n-+1

« Exponential Functions:

/e“dm=e""+0

o Trigonometric Functions:

/sin(az) dr = —cos(z) + C

/cos(x) dr = sin(z) + C

1.10.2 Definite Integral

Definition. 1.19: Riemann Sum

Let f(x) be a function defined on the interval [a, b], and let the interval be divided into n subintervals:
[a,b] = [zo, z1] U [21, 22] U - - - U [T, T
where x¢o = a and x,, = b, and the partition points
Loy Liy---3Tn

are chosen such that a = o < x1 < -+ <z, = b. The Riemann sum is defined as

n

Sy = Z f(z})Ax;
i=1

where:
o 1z is a sample point chosen from the i-th subinterval [z;_1, z;],
o Ax; = x; — x;_1 is the width of the i-th subinterval.

There are several ways to choose the sample points x; in each subinterval, which leads to different j

types of Riemann sums:
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o Left Riemann Sum: z] = x;_, the left endpoint of each subinterval.

« Right Riemann Sum: z] = z;, the right endpoint of each subinterval.

Ti—1 + €T;
2

Definition. 1.20: Definite Integral

The definite integral is defined as the limit of the Riemann sum as the number of subintervals n — oo

« Midpoint Riemann Sum: z} = , the midpoint of each subinterval.

and the maximum subinterval width Az; — 0:
b n
[ 1@ o= lim > st

The definite integral can be interpreted as the signed area under the curve y = f(z) from = = a to
x =b. If f(z) is above the x-axis, the area is positive, and if f(z) is below the x-axis, the area is

negative.

Theorem. 1.8: Fundamental Theorem of Calculus

Alternatively, the definite integral can be computed using the Fundamental Theorem of Calculus:

/ f(z) dz = F(b) - F(a)

where F'(x) is any antiderivative of f(x).

Some important properties of definite integrals include
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Definition. 1.21: Properties

o Linearity:

/ab (c1f (@) + cag(x)) dz = ex /abf(sc) 2y /abg(a:) dz

where ¢; and ¢y are constants.

/abf(x)dasz/acf(x)d:c—l—/cbf(x)dx

for any point ¢ between a and b.

/abf(x)dxz—/baf(x)dx

Reversing the limits of integration changes the sign of the integral.

o Additivity:

e Reversal of Limits:

e Zero Width Integral:
/ f(z)dx =0

The integral over a single point is always zero.

1.10.3 Integration by Substitution

Theorem. 1.9: Integration by Substitution in Indefinite Integral

Suppose we have the following indefinite integral:

/ o)) - ¢ (z) de

We can use substitution by letting u = g(z), so that du = ¢'(z) dz. This changes the integral into

/f(u) du

Now, we can integrate with respect to u and then substitute back in terms of z.

/ ze® dr

\.

Example. Consider the integral
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Let

uw=2% du=2zxdx

Hence, the integral becomes

Theorem. 1.10: Integration by Substitution in Definite Integral

For definite integrals, the limits of integration change according to the substitution. Suppose we

have

/ flo(@) - o' (z) dz

Let u = g(x), then the limits of integration transform as follows:

u(a) = g(a) and u(b) = g(b)

The integral becomes
9(b)

f(u) du

g(a)

We can now evaluate the definite integral in terms of w.

1.10.4 Integration by Parts

Theorem. 1.11: Integration by Part in Definite Integral

where u(z) is chosen to simplify «'(z) and v'(z) is easily integrable.

Proof. Integration by parts is based on the product rule for differentiation:

fu(w)e(e)] =

u'(z)v(x) + u(z)v'(x)
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Example. Evaluate the integral

/ re® dx

Let u = z, so that du = dz, and let dv = e” dz, so that v = €®. Using the integration by parts formula:

/a:e‘”dx:xez—/e””dx:a:e‘”—e””—i—C’

Theorem. 1.12: Integration by Part in Indefinite Integral

To solve an integral using integration by parts, we choose v and dv from the integrand. Differentiating

u gives du, and integrating dv gives v. Substituting into the formula, we obtain:

/udv:uv—/vdu

1.10.5 Multiple Integration, Line Integration and Surface Integration

Definition. 1.22: n-dimensional Integration

In n dimensions, the integral of a function f : R"™ — R over a region D C R" is given by

by b b
/f(x)dx:/ / / flxy,zo,. . xp)dey, ... deydry
D r1=ai ro=—az Tn=0n

Example. the 2-dimensional integral of a function f(x,y) over a rectangle [a, b1] X [ag, bs] is

by by
/ f(z,y)dydx

Definition. 1.23: Line Integration
A line integral is an integral of a function along a curve or path. Let r(t) = (x(t),y(t), 2(t)) be
a parametrization of the curve C', with ¢ ranging from a to b. Then, the line integral of a scalar

function f along C' is given by
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If the integrand involves a vector field F = (F}, Fy, F3), the line integral becomes

dt

Definition. 1.24: Surface Integration

A surface integral involves integrating over a surface S. The surface integral of a scalar function

L= [ (Fi@.00,200)5 + Fl,v0,20)% + B0, ) d

f(z,y, z) over a surface S is

[rwvaas= [ f(m(u,w,y(u,v),z(u,v))\%

where (z(u,v),y(u,v), z(u,v)) is the parametrization of the surface, and the determinant term is the

du dv

Jacobian of the transformation from the (u,v) parameter space to the (z,y, z) space.

For a vector field F = (Fy, Fy, F3), the surface integral becomes

oz, vy, 2)

B, v) du dv

/SF -dS = //D F(z(u,v),y(u,v), z(u,v)) - n(u, v)

where n(u,v) is the unit normal vector to the surface at each point.

1.10.6 Trapezoidal Rule and Simpson’s Rule

For more complex functions where integration is difficult, numerical methods such as the Trapezoidal Rule

can be used.

Theorem. 1.13: Trapezoidal Rule

Let f be a continuous function on [a, b]. Partition the interval into n equal subintervals of width

b—a
n

h:

and define the partition points by x; = a +ih for i =0,1,...,n.
The Trapezoidal Rule approximates the definite integral

/abf(w) dx
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by
b
/a f(z)dr = g

This method corresponds to approximating the graph of f on each subinterval by a straight line and

fla) +2 3 £(w) + 50

summing the areas of the resulting trapezoids.

Another more accurate numerical approximation is Simpson’s Rule, which approximates the area under

the curve by fitting parabolas to segments of the curve.

Theorem. 1.14: Simpson’s Rule

Let f be a continuous function on [a,b], and suppose that n is an even positive integer. With
bh—
h = a and partition points x; = a + ih, Simpson’s Rule approximates
b
f(z)dx
a
by
b h n—1 n—2
f@)dom o | fl@)+4)  fl@)+2 ) fla) + F0)
iZ:dld izglgn
This method is derived by approximating f on each pair of subintervals using a parabola, resulting
in significantly higher accuracy for sufficiently smooth functions.

1.10.7 Differential Equation

Introduction An ordinary differential equation (ODE) is an equation that involves a function and

its derivatives. A general first-order ODE has the form

dy

% :f(xvy)

Separable ODE A first-order ODE is separable if it can be written as

Y= g()nty)

Then we solve by separating variables:

1
mdy = g(z)dz
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and integrate both sides.

Integrating Factor A first-order linear ODE has the form

d
=+ Pla)y = Qlx)
x
can be solved by introducing
M(x) _ G[P(x)dac

Initial Condition An initial condition is a specification of the value of the solution (and possibly its
derivatives) at a particular point, usually denoted ty or zy. For an n-th order ODE, we typically need n

initial conditions to determine a unique solution.

1.11 Polar Coordinates

A point P in the plane is described in polar coordinates by an ordered pair (r, ), where
o 1 >0 is the radial distance which is the distance from the origin to the point, and
o 0 is the polar angle, measured counterclockwise from the positive z-axis.

Given polar coordinates (r,#), the corresponding Cartesian coordinates satisfy
x =rcosb, y =rsinf
Given Cartesian coordinates (z,y), the corresponding polar coordinates satisfy
r=+r2+y? 60=tan"} <%>

with the correct quadrant of 6 chosen according to the signs of x and .
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2 Spherical Trigonometry

2.1 Spherical Coordinates

A point in spherical coordinates is specified by

(p,0,9)

where
e p >0 is the radial distance from the origin,
e 0 € [0, 7] is the polar angle measured from the positive z-axis,

e ¢ €[0,27) is the azimuthal angle measured in the xy-plane from the positive z-axis.

2.2 Law of Sine and Law of Cosine
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P on the sphere, its spherical coordinates in the two systems are

x = rsin 6 cos ¢, y = rsinfsin ¢,
2’ =rsinf cos ¢, y' = rsind sing’,

Hence,
(

rsinf cos ¢ = rsin @’ cos ¢’

rsinfsin ¢ = rsin @ sin ¢’

rcos@ = rcos b
\

By geometry, the coordinates (z,z) and (2, 2') satisfy

2 = xcose+ zsine

2 = zcose — xsine

z =rcosf, (5)

2 =rcost (6)

Substituting the spherical-coordinate expressions into Egs. (H) and (E), we obtain

)
sin @’ cos ¢’ = sinf cos ¢ cos e + cos @ sine

sin @' sin ¢' = sin # sin ¢

cos ) = cosf cose — sinf cos psin e
(

Let the intersection points of the positive z-axis and z’-axis with the sphere, together with point P, form

a spherical triangle. Define
a=0, b=0, c=c, A=71—-¢, B=¢

Then Eq. (E) becomes

sinacos B = cosbsinc — cos Asinbcosc
sin Asinb = sinasin B

cosa = cosbcosc 4+ cos Asinbsinc

\

From Eq. (@), the spherical law of sines follows:

sin a sin b sin ¢
sinA sinB sinC
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The cosine rule for sides is

cosa = cosbcosc+ cos Asinbsinc (12)

An alternative form, the cosine rule for angles, is
cos A = —cos B cos C' + cosasin BsinC (13)
If A= z, then the cosine rule simplifies to
cosa = cos b cos ¢ (14)

When the sides a, b, and ¢ are small, the spherical triangle approaches a plane triangle. Using the second

order approximation
2

. a
sina = a, cosa~1——
2
Eq. () reduces to
a b c
sinA  sinB  sinC (15)

A =a®>+b>—2abcos A

They are precisely the law of sines and the law of cosines in plane geometry.

3 Astronomical Coordinate Systems

3.1 Horizontal Coordinate System

The Horizontal Coordinate System, also known as the Altitude—Azimuth (Alt—Az) Coordinate
System, is a location-based system used in observational astronomy to specify the position of a celestial
object in the sky as seen by a particular observer at a particular time. In the coordinate system,

there are
« Horizon plane: the plane perpendicular to the local vertical direction.

e Zenith: the point directly above the observer.

« Cardinal directions: North (N), East (E), South (S), West (W). oy 7
i y s
A celestial object’s position is specified by two angles: = cr :\ -
] o
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1. Altitude (h or Alt): Altitude is the angular distance of an object above or below the horizon.

2. Azimuth (A or Az): Azimuth is the angular direction of an object measured positively along the

horizon from the North.

3.2 Equatorial Coordinate System

The Equatorial coordinate system is used to specify the positions of celestial objects on the celestial
sphere in a way that is largely independent of the observer’s location and only slowly changes with
time.

To define the equatorial coordinate system, we introduce the celestial sphere, an imaginary sphere of

very large radius centered on the Earth. Also, there are some other features:
o Celestial poles: They are the extensions of Earth’s rotation axis intersecting the celestial sphere.
o Celestial equator: It is the projection of Earth’s equator onto the celestial sphere.

o Celestial meridian: It is the great circle passing through the celestial poles and the zenith of the

observer.
The position of a celestial object is specified by two angles:

« Declination (¢): It is the angular distance of an object north or south of the celestial equator. Note
that
— 6 = 0°: object lies on the celestial equator
— 0 > 0°: object is north of the celestial equator
— 0 < 0°: object is south of the celestial equator
— 6 = 490°: north celestial pole
— 6 = —90°: south celestial pole
» Right Ascension («): It is the angular distance of an object eastward along the celestial equator

from a fixed reference point. The reference point is the vernal equinox (Y1), defined as the inter-

section of the celestial equator with the ecliptic where the Sun crosses from south w“no\rth Right

ascension is usually measured in time units: Y. & /1
A .,"'- 4 .__.--’/a
= = *n' // .
0<a<24 W o\ oD
| Ll b
m A b} {,,}
i Y
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The Earth rotates 360° in approximately 24 hours. Measuring right ascension in hours makes it
directly related to Earth’s rotation and the apparent daily motion of the sky.
For example, 360° = 24 h.

Equatorial coordinates are fixed on the celestial sphere, but an observer sees objects in horizontal coor-
dinates (altitude and azimuth). The transformation between equatorial coordinates («, §) and horizontal

coordinates (A, h) depends on:
e Observer’s latitude ¢

o Local sidereal time: When a celestial object crosses the observer’s meridian, its right ascension equals

the local sidereal time.

o Hour angle H: It is defined as
H=LST -«

A key relation is:
sin h = sin ¢ sin ¢ + cos ¢ cos d cos H
3.3 Ecliptic Coordinate System

3.3.1 Ecliptic Plane

The ecliptic plane is the plane of the Earth’s orbit around the Sun. Its projection onto the celestial

sphere defines a great circle called the ecliptic.

3.3.2 Obliquity of the Ecliptic

The Earth’s rotation axis is tilted relative to the ecliptic plane by an angle called the obliquity of the

ecliptic:
€ & 23.44°
3.3.3 Coordinate Definitions
A celestial object’s position in the ecliptic system is specified by: D =

A
&’ -
A 1 e

« Ecliptic latitude (3): It is the angular distance of an object north or sotith ,of-l_.thé"e(jllipf'ip/lf__a_ne,‘_'_’_,...;
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« Ecliptic longitude (\): It is measured eastward along the ecliptic from the vernal equinox. His-
torically, ecliptic longitude was divided into twelve 30° segments corresponding to the zodiac con-

stellations.

Given equatorial coordinates («, d), the corresponding ecliptic coordinates (A, 5) are obtained by a rotation
by the obliquity angle €.
sin f = sind cose — cos d sin € sin «

sinacose + tandsine
tan A =

COs ¢

3.4 Galactic Coordinate System

3.4.1 Galactic Plane

The galactic plane is the plane defined by the mid-plane of the Milky Way disk. The Sun lies very close

to this plane, making it a convenient reference.

3.4.2 Galactic Center

The galactic center is the point in the sky towards which the center of the Milky Way lies, located in

the constellation Sagittarius. This point is used as the zero point for galactic longitude.

3.4.3 North Galactic Pole

The north galactic pole (NGP) is the point on the celestial sphere perpendicular to the galactic plane.

Its approximate position in equatorial coordinates (J2000.0) is:

angp = 12"51™,  dnap = +27°07

3.4.4 Coordinate Definitions

A celestial object’s position in the galactic system is specified by:

» Galactic longitude (I): It is measured along the galactic plane from the direction ofthé galactic

center. )
« Galactic latitude (b): It is the angular distance from the galactic plane.” s, y o
—— b \
\L:/.?r \li {’%
-~
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Let (angp, dngp) be the north galactic pole in equatorial coordinates, and ag the RA of the galactic center.
Then
sin b = sin d sin dngp + €os 6 cos Ongp cos(a — anGp)

cos 0 sin(a — angp)

tan(l — ) =
( 0) sin d cos dngp — €0s d sin dngp cos(av — angp)

where [y = 0° is the galactic longitude of the galactic center.

3.5 Circumpolar Stars

Circumpolar stars are stars that never set below the horizon from a given location. Their position is close
enough to one of the celestial poles that they appear to trace circular paths around the pole throughout
the night. These stars are visible year-round in regions near the pole, such as in the northern hemisphere
where the North Star (o Ursae Minoris) is circumpolar. Mathematically, the declination ¢ of a star must
satisfy:

0>90°—¢

where ¢ is the latitude of the observer.

4 Astronomical Time

4.1 Solar Time

4.1.1 Definition

Solar time is based on the apparent motion of the Sun across the sky. It measures time by the Earth’s
rotation relative to the Sun.

4.1.2 Apparent Solar Time

Apparent solar time is determined directly by the observed position of the real Sun. It can be measured

using a sundial.However, apparent solar days are not all of equal length due to:

1. The ellipticity of the Earth’s orbit (Kepler’s second law).

2. The obliquity of the Earth’s axis relative to the ecliptic. L . lj I /1
As a result, the apparent solar day varies slightly over the year. = ( |
-~
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4.1.3 Mean Solar Time

To obtain a uniform time scale, astronomers define the mean Sun, a fictitious point that moves uniformly
along the celestial equator, completing one revolution per year. Mean solar time is the time measured

by the hour angle of the mean Sun.
o A mean solar day is defined to be exactly 24 hours.

« Civil time (e.g. UTC, ignoring leap seconds) is based on mean solar time.

4.1.4 Equation of Time

The difference between apparent solar time and mean solar time is called the equation of time:

Equation of Time = Apparent Solar Time — Mean Solar Time

Its value varies throughout the year and can be as large as about +16 minutes.

4.2 Sidereal Time

4.2.1 Definition

Sidereal time is based on the Earth’s rotation relative to the distant stars rather than the Sun. Local

sidereal time (LST) is defined as the hour angle of the vernal equinox.

4.2.2 Sidereal Day

A sidereal day is the time it takes for the Earth to rotate once relative to the fixed stars, rather than the
Sun. This period is about 23 hours, 56 minutes, and 4.1 seconds, slightly shorter than a solar day. The

relationship between solar time and sidereal time is given by

Sidereal Time = Solar Time — Longitude Correction

To calculate sidereal time at a given location, the following formula is used:

- .f.':? {é"— Tt
Sidereal Time (ST) = GMST + Longitude Correction j». T80 7
o : y ,/ )
~ cr Y&
where w 23S
I \,(:/?# N \{’}
R >
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o GMST is the Greenwich Mean Sidereal Time, which is the sidereal time at the Prime Meridian.
« Longitude Correction is based on the observer’ s longitude.

The GMST is computed as follows:
GMST = 280.46061837° + 360.98564736629° x (JD — 2451545.0)

where JD is the Julian Date. The Julian Date (JD) is the number of days (and fractions of a day) that
have elapsed since

12:00 noon (UT) on 1 January 4713 BCE (Julian calendar)

4.3 Heliocentric Julian Date (HJD)

The Heliocentric Julian Date is the Julian Date (JD) corrected for the light travel time between the

Earth and the Sun. This correction accounts for the position of the Earth in its orbit.

HID — JD + =%
C

where
e ris the vector from the Sun to the Earth,
e §is the unit vector pointing toward the observed object,

e c is the speed of light.

4.4 Local Mean Time (LMT)

Local Mean Time (LMT) at a given location is defined as the mean solar time at that longitude.

4.5 Universal Time (UT)

Universal Time (UT) is a global time standard defined as the Local Mean Time at the Primeé Meridian

(0° longitude), which passes through Greenwich, London. Hence, ) H

UT = LMT at A = 0° Ny, <L
p ™,
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Universal Time is therefore often referred to as Greenwich Mean Time (GMT) in non-technical con-

texts.

4.6 Time Zones

To simplify civil timekeeping, the Earth is divided into time zones, each using a single standard time

rather than local mean time at every longitude. In an ideal model:
o The Earth is divided into 24 time zones.
» Fach zone spans 15° of longitude.
o The central meridian of each zone differs from the next by 15°.

The standard time of a zone equals the LMT of its central meridian. If a time zone has central longitude

Ao, then its standard time satisfies

Zone Time = UT + i\—g

This offset is usually written as UTC 4n, where n is an integer number of hours.

4.7 Different Definitions of a Year

There are several distinct astronomical definitions of a year, each corresponding to a different reference

frame or physical phenomenon:

Sidereal Year: The time required for the Earth to complete one full revolution around the Sun

with respect to the fixed stars. Its length is approximately 365.25636 days.

o Tropical Year: The interval between two successive passages of the Sun through the vernal equinox.
With a duration of approximately 365.24219 days, it is the basis of civil calendars, as it ensures long-

term alignment with the seasons.

e Anomalistic Year: The time elapsed between two successive passages of the Earth through perihe-
lion. This year has a mean length of approximately 365.25964 days and reflects the effects of orbital

precession.

—
a"'-_.

~ ._,r.jf/ {f;*-i B v
« Julian Year: A conventional unit of time defined to be exactly 365.25 days. It b ,-.éomflonly

employed in astronomical calculations for simplicity and standardization. s f
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5 Basic Units in Astronomy

Definition. 5.1: Astronomical Unit

The Astronomical Unit (AU) is the average distance between the Earth and the Sun.

Definition. 5.2: Light Year

A light-year is the distance that light travels in a vacuum in one year.

Definition. 5.3: Parsec

A parsec is the distance at which one astronomical unit subtends an angle of one arcsecond.

1AU
Ipc= ———— ~3.086 x 10'°m ~ 3.2621y ~ 206, 265 AU
tan(1”)

6 Fundamental Mechanics

6.1 Kinematics

6.1.1 Linear Motion

We can use the position vector r(t) to specify the position of a particle in a plane at time ¢.

y r(t2)

The figure above shows the position of a particle at two different times, t; and ts.

vector is given by

Ar =r(ty) —r(ty)
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The average velocity during the time interval At =ty — ¢, is:

v 7Ar
av_At

The instantaneous velocity at time ¢, is obtained by taking the limit as At — 0

7dr

VT

The instantaneous speed is the magnitude of the velocity vector
v=1|v|

The average acceleration is the rate of change of velocity

_AV
At

Aay

and the instantaneous acceleration is
dv  d’r
aAa=— = —
dt dt?

Suppose a particle moves with a constant acceleration a. At time ty, let its velocity and position be vq

and xg, respectively. Then, the motion can be described by:

X = Xgo + Vo(t — to) + %a(t — t0)2
v="vo+a(t—t)
[v[* — [vo|* = 22+ (x — xo)

The time derivative of a vector provides information about the rate of change of the vector’s magnitude

and direction.

6.1.2 Relative Motion

Introduction Let us consider two objects, A and B, moving in a straight line or in a plane;*The yeloeity

of object A relative to object B is given by

Va/B =VA— VB
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where
o v, is the velocity of object A relative to a fixed reference frame.
» vp is the velocity of object B relative to the same reference frame.

 va/p is the velocity of object A relative to object B.

When two bodies are rotating relative to each other, their angular velocities need to be combined to
determine the relative angular velocity. If object A has angular velocity w4 and object B has angular

velocity wp, the relative angular velocity of A with respect to B, denoted as w 4,5, is given by:

WA/B = W4 — Wpg

It is assumed that both objects are rotating about the same axis.

Retrograde Motion Retrograde motion is the apparent backward motion of a planet relative to the
background stars, caused by the relative orbital motion of Earth and the planet. Earth moves faster in its

inner orbit. Earth moves faster in its inner orbit.

Figure 4: Source: https://starwalk.space/en/news/what-is-retrograde-motion

Example. Given:

Ty = 365.25 days | . ?P

Thrars = 686.98 days
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Angular speeds:

360°
- — 0.9856°/d
“E = 36595 /day
360°
= — 0.524°/d
WM 686.93 /day

Relative angular speed:

Wrel = WE — WMars = 04616°/day

This relative angular motion causes Mars to appear to move backward against the stars during opposition.

The duration between successive retrograde motions of a planet is equal to its synodic period.

Synodic Period and Sidereal Period The synodic period (7},,) is the time interval between two
successive identical configurations of a planet as observed from Earth (e.g., opposition to opposition or

conjunction to conjunction).

The sidereal period (T5) of a celestial body is the time taken to complete one full revolution around the

Sun with respect to the fixed background stars.

Example. Let

o Ty = sidereal period of Earth

o Tp = sidereal period of the planet
For inferior planets (Mercury, Venus):

1 1 1

Tsyn TP TE

For superior planets (Mars, Jupiter, Saturn):

1 1 1

Tsyn TE TP

Slingshot Effect of Gravity The slingshot effect, also known as gravitational aSSIStr' occurs when

Fal
a spacecraft uses the gravity of a planet or moon to change its trajectory and 1ne‘rease 1ts velbc1f;y f;hls is

achieved by flying close to a planet or moon, which causes the spacecraft to accelera,te as It'is pulled bﬂﬁe J

planet’s gravitational field. The effect is used to save fuel and to direct spacecraft—tcr thelr de&n‘at@ons
L >
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6 FUNDAMENTAL MECHANICS By Pika and Owen

Mathematically, this can be described by the following equation for velocity change during the flyby

Av = Uspacecraft + Uplanet

where

1. Vspacecratt 1 the velocity of the spacecraft, and

2. Uplanet 1s the velocity of the planet as seen from the spacecraft’s reference frame.

6.2 Newton’s Law

First Law (Law of Inertia) An object remains at rest, or moves in a straight line at constant velocity,

unless acted upon by an external force.

ZF:O — a=0

Second Law The net force on a particle is equal to the time rate of change of its momentum:

For constant mass,

This is the most commonly used form of Newton’ s Second Law.
Third Law For every action, there is an equal and opposite reaction:
Fap = —Fpa

6.3 Linear Momentum

6.3.1 Introduction

Linear momentum is a fundamental concept in mechanics that describes the motion of aly Cibjth in terms

of its mass and velocity. It is defined as the product of an object’s mass and Ve}6c1ty lj I /1
y L - Py f vy ’/
= cr & i
pP=mv - :\ !

Page 62 / _ Il WJ



6 FUNDAMENTAL MECHANICS By Pika and Owen

where
o p is the linear momentum of the object,
e m is the mass of the object, and

o v is the velocity of the object.

6.3.2 Conservation of Linear Momentum

In an isolated system (no external forces), the total linear momentum of the system remains constant.

This is known as the conservation of linear momentum. Mathematically, for a system of particles,

n
Z P; = constant
i=1

where p; is the linear momentum of the i-th particle.

6.3.3 Impulse

The impulse of a force F acting on an object is defined as the change in the object’s momentum. Mathe-

matically,

J=Ap =FAt

where J is the impulse, Ap is the change in momentum, F is the average force, and At is the time interval

during which the force acts.

6.3.4 Rocket Equation

Let the rocket expel a small mass of fuel dm in a short time interval dt. By conservation of momentum,
Initial momentum = Final momentum

Initially, the momentum of the rocket is

Pinitial = M (t)v(t) b o

_r(;:\_"x y
G7s
After expelling dm of fuel, the rocket mass becomes m(t) — dm and its velocity becomes v t) —i:’dqy ;he T

.

expelled fuel has momentum dm - (v — u), because it moves at velocity v — u in the 1nert1al frame H@nce /

. &
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6 FUNDAMENTAL MECHANICS By Pika and Owen

the final momentum is

Poinal = (m(t) —dm) (v + dv) + dm(v — u)

Using differential approximation (ignoring higher-order terms dm dv) and equating momentum:
mdv = udm

Integrating from the initial mass m to the final mass my and initial velocity vy to final velocity vy:

dv=u —_—
vo mo m

If external forces (like gravity g or drag Fi.g) act on the rocket, the generalized form is

dv dm

m% = UE + Fext(t)

where Fy(t) represents any additional force.

6.4 Force, Torque and Equilibrium of Body

The force is any interaction that causes a change in an object’s motion. It is a vector quantity, having

both magnitude and direction. In vector notation:
F=(F,,F,F,
SI Unit: Newton (N) which is defined as
IN=1kgms!

Example of Forces
+ Gravitational force: F, = mg
o Normal force: the perpendicular reaction from a surface

o Friction: f= pN (opposes motion)
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o Tension: force transmitted through a rope

The torque 7 produced by a force F acting at a distance r from the pivot is the cross product:
T=1rxF

The magnitude is given by
T =rFsin(f)

SI Unit: Newton-meter (Nm)

F| = Fsinf

@
L 4 >

r (Lever Arm)
Pivot Point

A body is said to be in equilibrium when the net force acting on it is zero, and the net torque acting on

it is also zero. There are two types of equilibrium:

o Translational equilibrium occurs when the sum of all forces acting on a body is zero:

> F=0

e Rotational equilibrium occurs when the sum of all torques acting on a body about any point is

Zero:

ZT:O

6.5 Energy

When a constant force F acts on an object and causes a displacement s, the work done by the force is
defined as the dot product ,\
W =F-s= Fscosf

where 6 is the angle between the force and the displacement.
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If the force is not constant, then

W:/F-ds
c

where C' is the path of the object. Note that

o Work is a scalar quantity.
o« W > 0 if force and displacement are in the same direction.

« W <0 if force opposes motion (e.g. friction).

e« W=0if F Ls (no work done).

For an object of mass m moving vertically through a height h:
Wy = —mgh
if the object is lifted upward, and
Wy = +mgh
if it moves downward. The kinetic energy of a body of mass m moving with speed v is

1
K = —mv?
2mv

6.6 Circular Motion

6.6.1 Kinematics

Consider an object (for example, a dog on a rope) rotating about a fixed point with a radius r.

Center of rotation
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o Angular displacement: Af (in radians)

de

o Angular velocity: w = p
dw  d*0
o A. ]. ]. t. M = —_—= —
ngular acceleration: o = —- = —;

The rotational kinematic equations (analogous to linear motion) are
0 = 6y + wot + 3t

w=uwy+ at
w? —wi = 2a(f — bp)

For an object moving in a circle of radius r,

v =Trw
is the tangential (linear) speed.
The tangential acceleration is
Qtan = T
and the radial (centripetal) acceleration is
2
v
Qrad = — = TW2
r

6.6.2 Centripetal Force

Centripetal force is the force that acts on an object moving in a circular path. It is directed towards the

center of the circle or axis of rotation. The magnitude of the centripetal force is given by

where

e m is the mass of the object,
e v is the velocity of the object,

e 1 is the radius of the circular path.
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Object

Figure 5: Centripetal force always points toward the center of the circle.

6.6.3 Centrifugal Force

Centrifugal force is a fictitious or pseudo force that appears to act on an object when viewed from a rotating
reference frame. It appears to push the object away from the center of rotation. It is equal in magnitude
and opposite in direction to the centripetal force in the rotating frame of reference. The magnitude of the

centrifugal force is

6.6.4 Coriolis Force

Coriolis force is an apparent force that acts on a mass moving in a rotating system, such as the Earth. It

arises due to the rotation of the reference frame. The Coriolis force is given by
FCoriolis =2mv X w

where
e m is the mass of the object,
« v is the velocity of the object relative to the rotating frame,

e w is the angular velocity vector of the rotating reference frame.

6.6.5 Angular Momentum

For a particle at position r (relative to the origin) with linear momentum p:

L=rxp
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For a rigid body rotating around a fixed axis with moment of inertia I and angular velocity w:
L=1Iw

Just as force changes linear momentum, torque (7) changes angular momentum:

dL
Tnet = E

Theorem. 6.1: Conservation of Angular Momentum

If the net external torque on a system is zero (7., = 0), the total angular momentum is conserved:
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6.7 Case Study

A circular disk rotating about its axis with angular speed wy is placed gently with its axis horizontal on a
rough and inclined plane such that the friction acts up the plane. Given that the coefficient of friction is

1 and the inclination angle of the plane to the horizontal is ¢.
(a) Show that the disk will move upwards if y > tan ¢.
(b) Find the time that elapses before rolling takes place.

Solution. (a)

Equations of Motion: Take downward as positive and take counterclockwise as positive. Using Newton’s

Second Law for translation along the plane and rotation about the center of mass:

mix =mgsin¢ — f (16)
R—mgcos¢p =0 = R = mgcoso (17)
16 =7 (18)

Since the disk is slipping, kinetic friction applies:
f=pR=pmgcos¢ (19)
Substituting () into (@) . -
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g(sing — pcosg) <0
sin ¢ < i cos ¢

tang < p

Hence, the disk will move upwards if | 4 > tan ¢ |.

(b) For pure rolling,

Vcontact = U + aw =0

where v = 1 is the linear velocity and w = 0 is the angular velocity. Note that
v(t) = vy + &t = 0+ g(sin ¢ — pcos )t

Also,

T=—f-a=—(umgcosd)a

1
Using I = Ema2 for a disk,

2419 cos ¢

1 . .
§ma29 = —umgacosp — 0=
a

Note that
2419 cos qbt

w(t) = wo + 0t = wy
a

Substitute (@) and (@) into the rolling condition (@)

v(t) +aw(t) =0

[9(sin¢ — pcos P)t] +a {Wo — M%bt} =0

gt(sin ¢ — pcos @) + awy — 2ugt cosp =0
gt(sin — pcos ¢ — 2 cos ) = —awy

gt(sin ¢ — 3pcos ¢) = —awy

—awy

g(sin ¢ — 3y cos @)

t=
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7 Orbital Mechanics

7.1 Newton’s Law of Universal Gravitation

7.1.1 Introduction

Theorem. 7.1: Newton’s Law of Universal Gravitation

The Universal Law of Gravity states that every point mass attracts every other point mass with a
force that is directly proportional to the product of their masses and inversely proportional to the

square of the distance between their centers. This is mathematically expressed as

mime

F=G

r2

where

F is the magnitude of the gravitational force between the two masses,

G is the gravitational constant,

my and my are the two masses,

r is the distance between the centers of the two masses.

Theorem. 7.2: Newton’s Law of Universal Gravitation (Vector Form)

The gravitational force between two point masses m; and ms can be written in vector form as

mimsg
T

F=-CG

r2

where

F is the gravitational force vector on m; due to ma,

G is the gravitational constant,

my and my are the masses of the two objects,

r is the distance between the two masses,

7 is the unit vector pointing from m; to ma, i.e., the direction of the force. j
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The negative sign indicates that the force is attractive, meaning the force is directed towards the

other mass.
V.-g=—-4nGp
where

o V -gis the divergence of the gravitational field g, and
o p is the mass density of the object.

This law can be integrated over a closed surface to give the integral form of Gauss’s Law for gravity:

55 g dA = —47G Mo
S

where M., is the mass enclosed by the surface.

7.1.2 Barycentre

The barycentre or centre of mass is the weighted average position of all the mass in a system. It is the
point where, if all the mass were concentrated, the system would balance. For a system of particles with

masses mq, Mo, ..., M, located at positions ry,rs,...,r,, the position of the barycentre R is given by
1 n

where M = Z m; is the total mass of the system.
i=1
For a continuous mass distribution, the barycentre is calculated by integrating over the mass distribution.

If the mass density is p(r), the barycentre position is given by

1
R—M/Vrp(r)dv

where M = / p(r)dV is the total mass of the system, and the integral is take _
1%

mass distribution.
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7.1.3 2-body Problem

Consider two point masses, m; at position vector r; and ms at position vector ry, interacting via a central
force:

mity = Fop,  mory = Fip = —Fy
The center of mass (barycenter) is located at

miTy + Mol
R= Lt 722
mi + ma

and since the internal forces cancel by Newton’s third law, the acceleration of the center of mass is
R=0

Hence, the center of mass moves in a straight line with constant velocity. Define the relative position
vector

r=7T1 —I9
Differentiating twice with respect to time gives:

F F F F 1 1
f:fl_f2:£__12:ﬁ+ﬂ:<_+_)F<r)
my mo mi mo my mo

Define the reduced mass
mqme

mq + Mo
Then
i = F(r)

which is an effective one-body problem where a particle with mass p moves under the force F(r). The

angular momentum about the center of mass for the effective one-body problem with reduced mass p is
L=purxv

For a central force
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the torque is given by
T=rxF(r)=rx f(r)r=

Hence,
Cfl—f; =17=0 = L = constant
The total energy of the system is
E = %mﬂ + %,er‘z +U(r)

where U(r) is the potential energy of the central force. Note that

L=|L| = ur?
Using
: L
9 — —2
wur
we have
1 5. L?
Zurle?
il 2pur?
1 L?
E=_—u?+|U
o o 2]
Verr(r)

7.1.4 n-body Problem

Consider N bodies with masses m; and position vectors r;(¢) in three-dimensional space. According to

Newton’s law of gravitation, the acceleration of the ¢-th body is given by

my(r; —r;) .
= =1,2,...,N 20
Z TR =524 (20)

Jsﬁz

where ||r; — r;|| is the Euclidean distance between bodies ¢ and j.

7.1.5 Binet’s Equation

The classical Binet equation describes the shape of an orbit under a central gravitational

by Py W
oy tu=— = (#
dh? L? =
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where

1

e u = — is the reciprocal of the radial distance,
r

o ( is the gravitational constant,

o M is the mass of the central body, and

e L is the angular momentum per unit mass.

The general solution to this equation is an ellipse, with the form

1 GM
u(f) = RG] =77 (14 ecos(d — 6y))

where

o ¢ is the eccentricity of the orbit, and

e g is the initial phase of the orbit.

General Relativity introduces corrections to the orbit, particularly in the presence of a strong gravitational
field. One important relativistic effect is the precession of the perihelion, which causes the orbit to shift
over time. For orbits around a massive central body like the Sun, the general relativistic correction to the

Binet equation can be written as

T U= 2] 2

d*u GM 14 3GM
db? L?

7.2 Kepler’s Law

7.2.1 Three Kepler’s Laws

Theorem. 7.4: Kepler’s First Law

The orbit of every planet is an ellipse with the Sun at one of the two foci. The general equation for

an ellipse in polar coordinates (r,6) with one focus at the origin is

a(l —e?)
’]":—
1+ ecosé

where a is the semi-major axis, and e is the eccentricity (0 < e < 1). The eccentricity of an orbit
describes how elliptical it is. For a perfectly circular orbit, the eccentricity is 0, while for an elliptical j

orbit, it is between 0 and 1. The closer the eccentricity is to 1, the more elongated the orbit.
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1. Inner Solar System: The four terrestrial planets are located here, and their orbits are closer

to the Sun with relatively small eccentricities.

2. Outer Solar System: The gas giants and icy bodies like comets have more elongated orbits

and are located farther from the Sun.

J

Proof. Let the system be a planet of mass m orbiting a star of mass M (assumed fixed at the origin).

The gravitational force is

Mm
F=-G——r=ma
r
where = GM is the gravitational parameter and r = r7. The acceleration is a = _Es

r2
e Angular Momentum L (Kepler’s Second Law): The torque is 7 = r X F = 0 (since r is parallel
to F). Therefore, the angular momentum is constant:

L =r x p=m(r x v) = constant

The orbit is confined to the plane perpendicular to L.

« Laplace-Runge-Lenz (LRL) Vector A: The LRL vector is a constant of motion only for an
inverse-square force. It is defined as

A=pxL—-—mur

dA
To prove it’s conserved, we show o 0. Using the product rule,

%—d_pr_F X@—m@
dt ~ di P "
dp dL
Asa—Fanda—‘r—O, " P
-
RS- mu
ar T

ByF:—m—QNf’ and L = m(r x v):
r

mp .
FXL:—FTXm(I'XV):—
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Byax(bxc)=(a-¢c)b—(a-b)e,7-r=rand 7 -v=r,

Fxl= =" 0 = o] = o |5 -

Note that

%:i<r) rr—7r7°r  Vr—rr

r2 r2

g
Hence, F x L = mu—:. Therefore,

dA _  df 9,
ar Mg Ty T

The LRL vector A lies in the orbital plane. We find the orbit equation by taking the dot product of A

with the position vector r:
r-A=r-(pxL—-—mur)=r-(pxL)—mu(r-r)
Using the scalar triple product identity a- (b x ¢) =c¢- (a x b),
r-(pxL)=L-(rxp)
Since r x p = L, the identity simplifies to
r-(pxL)=L-L=L?

Therefore,

r-A=1L%—mur

The LRL vector A is constant. Let A = |A|. We define the angle § between r and A. Thenr-A = rAcos#:

rAcosf = L* — mur

L? 1
m,u1+miucosﬁ

Normalizing by m = 1 gives
14

"= 1+ ecosb
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which is the equation of conic section in polar coordinates, where

L2
¢ The semi-latus rectum is ¢ = —.
mp

e The eccentricity is e = —.
mp
As A, m, and pu are all positive, the eccentricity e is a non-negative constant.
o If the total energy E < 0, then 0 < e < 1, which defines an ellipse.
o If £ =0, then e =1, defining a parabola.

o If £ >0, then e > 1, defining a hyperbola.

Planetary orbits are bound orbit, meaning the total mechanical energy E is negative (E < 0). This

guarantees 0 < e < 1, proving that the orbit is an ellipse with the Sun (the central mass) at one focus.
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Theorem. 7.5: Kepler’s Second Law

A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

Proof.

» The gravitational force F is always directed along the line connecting the planet and the Sun (it’s a

central force).

« The torque (7) on the planet with respect to the Sun (the origin) is given by

T=rxF=rx <—GMmf>

r2
Since r and 7 are in the same direction, r x 7 = 0. Hence, the torque is zero: T = 0.

o By Newton’s second law for rotation, the torque is equal to the rate of change of the angular

momentum (L):
dL

arn

Since 7 = 0, the angular momentum L is conserved:
L=rXxp=r X (mv) = constant

where p is the linear momentum.

o The angular momentum can be expressed in terms of the area swept out per unit time. Consider
an infinitesimal time dt. The area dA swept by the radius vector r is approximately the area of a
triangle:

dA = %|r X dr|
Since dr = vdt, we have:

1 1
dA = §|r x vdt| = 5\1‘ x v|dt

o The rate at which area is swept out is E:

dA 1 1 |L|
— = —|r X v| = —|r X mv| = — = constant
2m 2m

a2
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Theorem. 7.6: Kepler’s Third Law

Kepler’s Third Law states that the square of the orbital period T of a planet is directly proportional
to the cube of the semi-major axis a of its orbit. Mathematically,
T? x o®

In the case of elliptical orbits, where a is the semi-major axis, the law still holds and it can be

expressed as

where

T is the orbital period of the planet.

a is the semi-major axis of the ellipse.

G is the gravitational constant.

M is the mass of the central body (e.g., the Sun).

Proof. By Kepler’s 2nd law,
mab L

T  2m
as the area of ellipse is given by mab. By Kepler’s 1st law, r = a(1 — e) and

L2
- GMm?2(1 + ecosf)

r(0)
L2 2 . . . 2 47“-2 3
Then —; = a(1 — e”)GM. Substitute the formula involving the area, T° = o
m
In some regions of the Solar System, objects have synchronized orbital periods due to gravitational inter-
actions. This phenomenon, known as orbital resonance, is particularly important in the asteroid belt and

among some moons of the giant planets.
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7.2.2 Kepler’s Equation

The eccentric anomaly F is defined using an auxiliary circle:
o Draw a circle of radius a centered at the origin (the auxiliary circle).
o For a point P on the ellipse, draw a vertical line to intersect the auxiliary circle at Q.
e The eccentric anomaly F is the angle ZXO0Q.

where O is the center of the ellipse and X is the positive z-axis direction. Although F is not a physical
angle measured from the focus, it provides a convenient parametrization of the ellipse. Using the eccentric

anomaly F, the position of the orbiting body is

r=a(cosE —e)

y=aVv1l—e?sink

The true anomaly v is the physical polar angle of the orbiting body measured from periapsis. The

relation between v and FE is

; 2 1—|—et E
bV

The area swept from periapsis to point P on the ellipse is

2

a2 (E —esinE)
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The total area of the ellipse is ma?V/1 — €2, but by Kepler’s second law, the fraction of area swept equals

the fraction of time elapsed:
A t—rT

ma? T

where T is the orbital period. Using mean anomalty
M=n(t—r1)
(where mean motion n = 27/T and 7 is the time of periapsis passage), we obtain
M =FE —esinkE
which is the Kepler’s equation.

7.2.3 Poisson Bracket

Definition. 7.1: Poisson Bracket

The Poisson bracket of two functions f(q,p) and g(q,p), where ¢ and p represent generalized coor-

dinates and momenta, is defined as

{f,9} = Z (3% op;  Op; 8%)

Here, ¢; and p; represent the generalized coordinates and momenta for the i-th degree of freedom.

Definition. 7.2: Levi-Civita Symbol

The Levi-Civita symbol is defined as

(

+1 if (¢,7,k) is an even permutation of (1,2, 3),

€ijk = 4 —1 if (4,7, k) is an odd permutation of (1,2, 3),

0 if any two indices are equal.
\

Definition. 7.3: Lie Algebra

A Lie algebra is a vector space g over a field (typically R or C) equipped with a binary operation
called the Lie bracket, denoted by [-,:]. The Lie bracket is a bilinear map that satisfies the following
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two properties:

o Bilinearity:

[aX+bY, Z] = a[X, Z|+b]Y, Z], [Z,aX+bY]|=alZ, X]+b[Z,Y] forall X,Y,Z€g, abeF

e Antisymmetry:

[X,Y]=—[V,X] forall X,Y €g
o Jacobi Identity:

(X, [V, Z)| + [V, [Z, X]] + [Z,[X,Y]] =0 forall X,Y,Z€g

For the angular momentum L = r X p, the components of the angular momentum are

L; = €i7p

where ¢, is the Levi-Civita symbol, and we are summing over repeated indices.

{pz’, Lj} = {pz‘, ijl?“kpl} = €5kl ({pi,?“kpl})

As the position 7, and momentum p; are conjugate variables, we have

{pi; e} = =0k
and
{pipi} =0
Note that
i, i} = riedpis i} + pidpis T} = —pidin
Finally,

{pi, Lj} = €ju(—pidir) = —€juapiire = €ijkPk
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GM
P } — " which is generalized LRL vector. One can prove that

Define W = {—,L

m r

—2F
{Wi, W} = e < = Lk)

and show that it forms lie algebra.

7.3 Shell Theorem

Theorem. 7.7: Shell Theorem

o A spherically symmetric shell of mass exerts no net gravitational force on a particle located

inside the shell.

o A spherically symmetric shell of mass exerts a gravitational force on an external point

mass as if all the mass were concentrated at the shell’s center.

For a point mass located at a distance r < R inside a uniform solid sphere (e.g., a planet), the Shell

Theorem implies:
e Only the mass enclosed within radius r contributes to the gravitational force.

o Mass at radii greater than r exerts no net force by First Shell Theorem by considering it as infinites-

imal shells.

Only inner mass co

_____

Assuming uniform density, the mass enclosed within radius r is

7“3

M(r):M-ﬁ
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Then, the gravitational force on a test mass m located at distance r from the center is

_ GM(r)m  GMm

F r2 R3

r

by second shell theorem.
Example. (Simple Gravity Train) Mass outside the spherical surface of radius r produces zero net

force. The mass enclosed is

The gravitational force magnitude is therefore

M(r)m GMm ,
F=-G s =g =

M
which is in Simple Harmonic Form (SHM) form a = —w?z. Therefore, w = 1/62—3 and time of travel

T R

=Ty —.
| GM g
R3

Remark. The gravity train (also known as the Gauss gun, gravity elevator, or vacuum train) is a fasci-

t =

nating thought experiment in classical mechanics. First proposed by Robert Hooke in the 17th century
and later analyzed by Isaac Newton, it explores what would happen if a tunnel were drilled through the

Earth and an object were dropped through it.

Example. (Generalised Gravity Train) Consider a straight tunnel connecting two arbitrary points
A and B on Earth’s surface, not necessarily antipodal. The tunnel forms a chord of Earth’s circular
cross-section.

Let s be the coordinate along the tunnel, with s = 0 at the midpoint M. The endpoints are at s = +1L/2.

For a point inside a homogeneous Earth at position r from the center, the gravitational force is radial:

GM(r). ‘ re
F=- ol with M(r) = EM
Hence, L .
GM p -V
F = _ﬁrr jj '.--'/- ?j I_-',_

By L /,1

Let the tunnel be at a constant perpendicular distance y from Earth’s center. For a f)'oin't ogthetu!ﬁel f
e - T =
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at coordinate s, its radial distance from Earth’s center is:

s) = VIT S

The component of gravitational force along the tunnel (in the § direction) is

.. sstuyy
Since r =

, we have:

which is also in SHM form.

7.4 Gravitational Potential Energy

Definition. 7.4: Conservative Force

Potential energy can be defined only for conservative forces, which satisfy:
e The work done is path-independent.
o The net work over a closed loop is zero.

A scalar potential function U(r) exists.

Theorem. 7.8: Potential Energy

For a conservative force F, the force is related to potential energy by

F=-VU

Theorem. 7.9: Gravitational Potential Energy

The gravitational potential energy (U) of an object in a gravitational field is defined as the work
done in moving the object from infinity to a point at distance r from the source of the gravitational

field. For two point masses, the gravitational potential energy is given by

mime

U=-G

r
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where

U is the gravitational potential energy,

G is the gravitational constant,

my and my are the two masses,

r is the distance between the centers of the two masses.

Proof. The gravitational force is:

Then,

|
@Q

7.4.1 Vis-viva Equation

Theorem. 7.10: Vis-viva Equation

The Vis-viva equation, also known as the orbital energy conservation equation, relates the velocity

of an orbiting body to its position and the geometry of its orbit. It is expressed as

2 1
rooa

where
» v is the orbital speed of the orbiting body.

e 71 is the distance between the two bodies.

e a is the semi-major axis of the orbit.
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e/ is the standard gravitational parameter (GM).

Proof. Let v; be the furthest distance from the object to the planet and vy be the closest distance from
the object to the planet.

. T1 . .
By conservation of angular momentum, m riv; = mryvs =—> vy = —wv;. By conservation of mechanical

)
1 5 GMm

energy §mv — = constant.

r
9 ZGMT'Q

t ri(ry +12)

™
By myrivy = mrovg = vy = —w; and ry + o = 2a,

T2
2 1
rooa
where G is the gravitational constant.

7.4.2 First Cosmic Speed, Second Cosmic Speed and Third Cosmic Speed

Definition. 7.5: First Cosmic Speed

The first cosmic speed is the minimum velocity required for an object to orbit the Earth in a circular

trajectory at the lowest possible altitude (negligible height above the surface).

For a satellite to remain in a circular orbit, the gravitational force must provide the required centripetal

force.
F grav — L' centripetal
GMm v}
_— = m—
R? R
where

o M: Mass of Earth (=~ 5.97 x 10** kg)
« m: Mass of the satellite
« R: Radius of Earth (= 6.37 x 10°m)

e (: Gravitational Constant
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Definition. 7.6: Second Cosmic Speed

The second cosmic speed is the minimum velocity required for an object to break free from Earth’s

gravitational attraction, effectively escaping to infinity. It is commonly known as escape velocity.

The total energy at Earth’s surface must equal the total energy at infinity (where both potential and

kinetic energy are zero for a barely escape scenario).
KSUTface + Usurface = Koo + Uoo

1 GMm
g~ =0

o [2GM
T R

Note that vy = V20;.

Definition. 7.7: Third Cosmic Speed

The third Cosmic Speed is the launch velocity required from Earth to escape the Solar System.

This requires overcoming Earth’s gravity and then having enough residual velocity to escape the Sun’s

gravity.

« Hyperbolic Excess Velocity (v.): Utilizing Earth’s orbital speed (vg &~ 29.8km/s), the space-

craft needs an excess velocity relative to Earth of

Voo = Vese,0 — VE

o Launch Calculation: Applying energy conservation from Earth’s surface:
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v = \/ V2 + v2

7.4.3 Hohmann Transfer Orbit

The Hohmann transfer orbit is the most fuel-efficient two-impulse maneuver for transferring a spacecraft

between two coplanar circular orbits around the same central body.

Direction
of the
motion

Figure 6: Source: https://www.sciencedirect.com/topics/engineering/hohmann-transfer

For a spacecraft in a circular orbit of radius r around a central body of mass M, the orbital speed is

GM

r

Ve =

For any Keplerian orbit, the speed at distance r is given by the vis-viva equation:

v2:GM(g—1)
roa

where a is the semi-major axis of the orbit. Consider two circular orbits of radii 7, (initial) and r (final),

with ro > r;. The Hohmann transfer orbit is an ellipse with:
1. Periapsis at rq,

2. Apoapsis at rs.
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The semi-major axis of the transfer ellipse is

T+ T2
a =
2
The spacecraft initially moves with circular speed
GM
vy = ——
1

At periapsis of the transfer ellipse, the required speed is obtained from the vis-viva equation:
2 1
e o (2-0)
T1 a

Avy = v, — 1y

The first velocity increment is therefore

This burn places the spacecraft onto the elliptical transfer orbit.

At apoapsis of the transfer ellipse (r = r3), the spacecraft speed is

The circular speed in the final orbit is

The second velocity increment is

Avy = U9 — 1,

After this burn, the spacecraft is inserted into the final circular orbit.

The total fuel cost of the maneuver is measured by the total velocity increment:
A,Utotal = A'Ul + A'UQ

The Hohmann transfer minimizes Avgota among all two-impulse transfers between coplanar gircular orbits.
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Hence, the Hohmann transfer time is
a3

Liransfer = T aM

This relatively long transfer time is the main trade-off for fuel efficiency.

7.4.4 Blackhole

The event horizon is a boundary in spacetime beyond which events cannot affect an observer. It is
commonly associated with black holes, and marks the point at which the escape velocity exceeds the
speed of light. This means that not even light can escape from inside the event horizon, which is why
it appears black. For a non-rotating, spherically symmetric black hole, the event horizon is given by the
Schwarzschild radius rg, which is the radius at which the escape velocity equals the speed of light. The

Schwarzschild radius is defined as

2GM

2

T's
C

where
e ( is the gravitational constant,
e M is the mass of the black hole,
o cis the speed of light.

Beyond the event horizon, all paths of particles and light curves back into the black hole, and no signal

can escape to the outside universe.

7.4.5 Virial Theorem

Homogeneous Function In the Virial Theorem, the degree refers to the degree of homogeneity of
the potential energy function with respect to the spatial coordinates. A function f(r) is said to be

homogeneous of degree k if, for any scaling factor A,

FOr) = M f(r)

Let the total potential energy of an N-particle system be ) ;_
- Pae
T BE
) = '-::f'l J.. g s /""_ = ,..--"'"....
U(rl, ro,... ,I'N) | 5 ’rl ‘/’f
s 4 | — -\l‘\ l‘\_...ll
o
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If U is homogeneous of degree k, then Euler’s theorem for homogeneous functions gives
N
> r Vo, U=kU
i=1
Using the relation between force and potential,
Fi - —VrZU

we obtain

N
i=1

Virial Theorem Consider a bound system of N particles with total kinetic energy T" and total potential
energy U. If the system is stable and the potential energy is a homogeneous function of degree k in the

coordinates, then the Virial Theorem states:

where () denotes a time average.

Proof. Define the virial G as N
G = Z Pi- T
i=1

where p; = m;v; is the momentum of the i-th particle. Taking the time derivative,

5 ()

Using Newton’s second law % =F,and p; - v; = mivf = 2T}, we obtain

dG

For a bound system, GG remains finite, so its time average satisfies
dG
N
dt
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Hence,
2T + <ZF r> =0

If the forces derive from a potential U that is homogeneous of degree k, then

leading to

For gravitational potential,

Hence,

Velocity Dispersion Consider a system of N particles with velocities v;. The mean velocity is

6= v

The velocity dispersion is defined as the variance of the velocity distribution:
| N
2 2
ot = (v = W) = % S i — v

=1

In many observations, only one velocity component (e.g. along the line of sight) is measurable. The

one-dimensional velocity dispersion is

U%D = <(Uw - <Um>)2>

For an isotropic system,

2_ 2, 2, 2_ o2
0" =o0,+0,+0,=301p

The total kinetic energy of a system of mass M is

T = %Zm,vf
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If the bulk motion has been subtracted and the velocity distribution is isotropic, then

1 3 1
T = §M<'U2> = §MO'%D = §M0'2

For a gravitationally bound system in virial equilibrium,

2I'+U =0

GM?

1
Using T' ~ §M0'2 and U ~ — , we obtain

Gravitational Potential Energy of a Uniform Solid sphere of Total Mass M and Radius R

The mass density is

M
P= %WR3
The mass inside radius 7 is
4
M(r) = §7T7“3p

A thin spherical shell of radius r and thickness dr has mass
dM = 4nr?pdr

The gravitational potential energy gained by bringing the shell from infinity to radius r is

GM(r)dM
r

dU = —
Substituting M (r) and dM,
4 1
dU = —g <§7T7“3p) (47Tr2,0dr) = —367T2Gp2r4 dr
r

Integrate from r =0 to r = R:

R R 5
16 16 R/
U= / dU = ——7r2Gp2/ ritdr = ——n?Gp*—*
0 0 .
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Thus,
16 5, 905
U= =" Gp°R
Substitute
_3M s 9M?
P=4re 7 T 16x°RS
Then,

U:

16 , 9M> 5 3GM?
——TT —
15 1672 RS 5 R
It can provide order-of-magnitude estimates of gravitational potential energy of the uniform spherical
3
galaxy model or other astrophysical objects. The coefficient F assumes a uniform density. Real as-

trophysical objects are centrally concentrated, leading to different numerical factors. Nevertheless, the

scaling
GM?

U~ —
R

remains universally applicable.

7.4.6 Tully-Fisher Relation

In 1977, R. Brent Tully and J. Richard Fisher discovered an empirical relationship between the luminosity

L of spiral galaxies and their maximum rotational velocity vpax:

where observations give a =~ 3.5 — 4 in the infrared and o ~ 2.5 — 3 in the blue band.
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7.5 Lagrange Point

Figure 7: The Five Lagrangian Points (L; to Ls) in the Sun-Earth System’s Rotating Frame

Two primary masses M; and M, orbit their common center of mass in circular motion. Let M; > M.

Define the reduced mass
M,

SRS TS

Normalize My + My = 1, and the gravitational constant G = 1. In the rotating frame centerline at the

center of mass, M is at (—p,0) and Ms is at (1 — u,0). The angular velocity w of the rotating frame

satisfies (from Kepler’s 3rd law for M; and M)

particle at r = (z,y) are
PR ou . 4 o oU
I —_ w —_
g=g 3
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where
1 L—p  p
Uz,y) = —w?(2® +19° —+ =
(z,y) = Swi( +y)+,r,1 t
Centrifugal Potential
with

=Vt p)? g = (r =1+ p)?+y?

Lagrange points are stationary points of U in the rotating frame (equilibrium points where & = y = 0):

ou ou
9r =0 gy =0
ou - (—pltp) pe—1+p)
5, Tt 3 - 3 =0
Ox Ty 5
ou 1l—p p
3y_y<1 ri T%)_O

For y = 0, we have r; = |x + |, 72 = |v — 1 + p|. The x-equation becomes

I—p
—msgn(x+u)—msgn(x—l+u):0

e x>1—p (beyond Ms):

o p<z<1—yp (between M; and My):

L—p p
=0
@t p? A p—a)?

e o < —u (opposite side of M; from My):

I—p n 7 _
(@ +p)3?  (z—1+p)?

T +

They have series solution:

/3 1 2/3
Ly : le—,u—(g) —|—§(§) +...

N3 1 23
Lo : ~1-— (—) —(—)
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5)
Ls :c%—l—ﬁ,qu
F — =0
romay ,
L—p  p
1— - = 0
(-5 5)
If y # 0, then
L—p  p
2 _1 *
r3 +r§' ()
Froma—U:O,
ox
A-wetp pe—1+p
L= 3 - 3 =
1 2

Multiply (*) by = and subtract from above:

1— 1— 1— 1—
B ) O T C el N e _1on

r3 rs Y

Hence, for u # 1, we get 11 = ro. From r; = ry, (*) gives

1
1

Sory =ry=1. Now (z + pu)> +5*=1and (z — 1+ pu)* +y* = 1. Solving,

1 V3

= — — =+
T=5 7 HY 5

1 V3
Ly (5—“’7)

Therefore,

7.6 Roche Limit

The Roche limit is the minimum distance from a planet within which a celesti%body, S

asteroid, will experience tidal forces strong enough to break it apart because of t net’ a

%
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Roche limit is given by the formula

1/3
dRoche =244 R (_pplanet)

pmoon

Derivation of simplified model: Tidal force is the difference in gravitational force felt across an object
due to another massive body.

Consider a small object of radius R located at a distance d from a much more massive body of mass M.

GM GM
Qnear = 77 551 Qfar = 77 7575
(d—R)2 "™ (d+R)?

The tidal acceleration is the difference between the accelerations on the near and far sides

GM GM

Atidal = Anear — Qfar = (d — R>2 (d + R)?

Assume R < d. Then

1 1 __2R
dtRE BT &
Therefore,
1 2R 1 2R 4R
=6 ((+% ) - (7)) v
_2GMR
Qtidal (per side) ~ T
Note that
_ 2GM, R, Gmy
Qtidal ~ B Aself = R2
4 3 4 3
By ms = gﬂRSpS and M, = gﬂRppp,

29GM,R, Gm,
B R

s

1/3
d=R,- (2 . @)
Ps
For the derivation of non-simplified model,
one can refer to https://dxwl.bnu.edu.cn/CN /abstract/abstract7639.shtml.

which can be simplified to
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8 Relativity

Newtonian mechanics, formulated in the 17th century, works exceptionally well for everyday speeds
(v < ¢). However, as experiments in the late 19th century became more precise (e.g., Michelson-Morley

experiment), inconsistencies emerged that required a new theoretical framework.

8.1 Postulates of Special Relativity
« Principle of Relativity: The laws of physics are the same in all inertial reference frames.

o Invariance of Light Speed: The speed of light in vacuum, ¢, is the same in all inertial frames,

regardless of the motion of the source or observer.

8.2 (Galileo Transformation

In classical mechanics, the Galilean transformation relates the coordinates of an event as observed in two

inertial frames of reference moving at a constant relative velocity. Suppose we have two inertial frames:
o Frame S: stationary frame with coordinates (x,y, 2, t)
o Frame S’: moving with constant velocity v along the z-axis relative to S, with coordinates (z', 3/, 2/, t')

The Galilean transformation equations are

r =x—vt
Y=y
2=z
=t
8.3 Lorentz Transformation
Definition. 8.1: Lorentz Factor
1 1
’y prnd g
2 y1-p2

=2

where v is the speed of the object and g := g j
c
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In special relativity, the Lorentz transformation relates the coordinates of an event as observed in two
inertial frames moving at a constant velocity relative to each other. Unlike the Galilean transformation,

it accounts for the constancy of the speed of light.

Theorem. 8.1: Lorentz Transformation

For two inertial frames S and S’ with S” moving at velocity v along the z-axis relative to S, the

Lorentz transformations are

' =y(x — vt)
y =y
o =z

Theorem. 8.2: Inverse Lorentz Transformation

For two inertial frames S and S’ with S’ moving at velocity v along the x-axis relative to S, the

B , vr!
t—’}/ t+c—2

inverse Lorentz transformations are

r =y(x' + vt
y=y
s=g

Theorem. 8.3: Lorentz Transformation for Velocity

For two inertial frames S and S’ with S’ moving at velocity v along the x-axis relative to S, the

velocity transformations are

;) Vg — U
O = 1 — We
02
v = Yy
y VU
’}/(1 02)
(%
v, =
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8.4 Spacetime Diagram

A spacetime diagram is a graphical representation of events in spacetime.

Time (ct)

Space (z)

8.5 Relativistic Kinematics and Mechanics

8.5.1 Time Dilation

Time dilation is one of the most fascinating consequences of special relativity. It states that time measured
in a moving frame (proper time 7) appears to run slower compared to time measured in a stationary frame

(coordinate time t). The relationship between proper time (7) and coordinate time (t) is given by

At = yAT

time), how much time passes on Earth?

Page 104 /




8 RELATIVITY By Pika and Owen

Solution.
1

T I= 08

At = yAT = 1.667 x 5 ~ 8.33 years

~ 1.667

8.5.2 Length Contraction

Length is defined as the distance between simultaneous measurements of an object’s endpoints. For a rod

of proper length Ly at rest in S’, moving with velocity v in S. In S, measure endpoints simultaneously

(At =0):

Ax = L (measurable length in S)
Az’ = Ly (proper length in S)

Az' = ~v(Az — vAt) = ~L

L
L==2
S

Hence, moving objects appear shorter in their direction of motion.

8.5.3 Relativistic Momentum

Consider a particle with rest mass my.

P = vymov

8.5.4 Relativistic Energy

The correct relativistic expression for kinetic energy is
K = (y—1)mc?

Proof. Starting from the work-energy theorem and relativistic momentum:

= mgc? / dy = ymoc® + C
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When v = 0, K = 0. Therefore, K = (7 — 1)mqc’.
The total energy of a particle is
E = ymc® = K + moc?

This consists of two parts:
+ Rest energy: E, = mqoc?

« Kinetic energy: K = (7 — 1)mc?

8.5.5 Relation between Relativistic Momentum and Energy

From our definitions:

E = ymyc?

b = ymov

Compute E? — (pc)*:

E? — (pc)? = (ymoc?)? — (ymove)?

2
2 94 v
= y"mgce (1—;)

241_2_2 : 2 1
=mc e (since y* = _ﬁ)
c2 c?
_ 2.4
= mgc

Hence we obtain the fundamental relation:

E? = (pc)® + (moc?)?

8.6 Spacetime and Four Vector

8.6.1 Spacetime in Special Relativity

Events are described by four coordinates:

o = (2°, 2t 2? 2%) = (ct,z,y, 2)
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where

o 2° = ct is the temporal coordinate (with ¢ being the speed of light)

o ' 22 2® are spatial coordinates

Example. A frame S’, is moving with velocity v along the y-axis of another frame S. The Lorentz

transformation in terms of 2° = ct, = z, 2?2 = Y, = z, 20 =t is

2 = 3(a" - Ba')
2" = y(a' — Ba*)
.’17/2 — x2
1,13 — 1’3

8.6.2 Four-Vector

A four-vector A* is a mathematical object that transforms under Lorentz transformations in the same

way as spacetime coordinates:

AP = (A%, A, A2, A®)

The transformation rule for a Lorentz transformation A is

AW = AR AY
where
vy =B 00
-8 v 00
At =
0 0 1 0
0 0 0 1
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Example. (Continued) A second-rank tensor has only one non-zero component in the S-frame, T% = p.

The components in the S'-frame are obtained using the Lorentz transformation:
TIOO — ’}/2TOO TlOl — ’}//BTOO T/lO — ’)//BTOO Tlll — TOO

T/22 — T22 TI33 — T33

Hence, the components of T*” in S’-frame are
T0 — A2, L0 _ g, il

8.6.3 Metric Tensor

The metric tensor g, defines the geometry of spacetime. In special relativity with Cartesian coordinates,

it takes a simple form known as the Minkowski metric:

1 0 0 O

0O -1 0 0
Juv =

0O 0 -1 0

0O 0 0 -1

In component form:

go=1 gu=gn=gs=-1, gu=0frpu#v

The metric tensor allows conversion between contravariant (upper index) and covariant (lower index)

vectors.

Lowering an index

A, = gAY
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Explicitly:

Ag = gOOAO = A"

A =gnAl = —A
Ay = 922A2 = —A?
Az = 933A3 = —A°

Raising an index

AF = g A,

where g"” is the inverse metric, which for Minkowski spacetime is identical to g, :

1 0 0 O
0 -1 0 0
g =
0 0 -1 0
0o 0 0 -1
The metric tensor and its inverse satisfy
1 ifu=v
9 g =0 =
0 ifpu#v

where 0/ is the Kronecker delta.

8.6.4 Invariant Interval

The invariant interval between two infinitesimally close events in spacetime is defined as:

ds® = g, dztdz”

Expanding in components for Minkowski spacetime:
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For finite separation between events, the interval is:
As? = AN — Ax? — Ay? — A2

The most important property of ds? is that it is invariant under Lorentz transformations. If we transform

to a new coordinate system z'*:
ds* = g, da""dz" = G N daldx” = gpedaldr” = ds?
This invariance follows from the defining property of Lorentz transformations:
G NNy = Gpo

8.6.5 Important Four-Vectors in Physics

Position Four-Vector

= (et,x) = (ct,z,y, 2)

Velocity Four-Vector The four-velocity is defined as the derivative of the position four-vector with
respect to proper time 7:

dzt
ut = i (ye,yv)

where 7 is proper time.

The components are

o dr®  cdt
U = — = — = °vC
ar a7
,  dat dxtdt s
u = = _— = v
dr ~ dt dr
Magnitude of four-velocity is given by
2,2
202 2y ¢ v 9
utu, =y (" —v7) = ey c

Momentum Four-Vector
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where F = ymc? is relativistic energy and p = ymv is relativistic momentum.

Explicitly,
i E
P = _ap:r:7py7pz
c
Furthermore,
E? 2 2 2
Pou=— —p =mc

Example. Consider two spatial and one temporal dimensions. A particle emits a photon, making an
angle ¢ with the z’-axis in a frame (S’-frame). Hence, the trajectory of the photon can be written as

2’ =ct' cost® and y = ct'sinf’.

(a) If the S’-frame is moving with velocity v with respect to another frame (S-frame), what is the

trajectory of the photon in the S-frame?

(b) What is the energy-momentum four-vector of the photon in the S’-frame, if the frequency measured

in this frame is f7 (Of course, the z-component, p, is zero.)
(c) Express the energy of the photon in the S-frame in terms of 6.
(d) At which direction does the photon have maximum energy in the S-frame?

To find the trajectory in the S-frame, we apply the inverse Lorentz transformations. Assuming the S’-frame

moves with velocity v along the z-axis of the S-frame, the coordinates transform as:

=2 +vt')

y=y
v’
t=r~ (t’ + —2)
c
v
where v = ———— and 8 = —. Substituting the S’-frame trajectory z’ = ct’ cos#' and y' = ct’'sin0":
Ji- 5 c

(1) x =(ct' cos@ + vt') = ~t'(ccos§ + v)

(2) y = ct'sind

c2

(3) t=7 (t'—l— M) =~t'(1 + S cosd)
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t

To find z(t) and y(t), we solve for ¢’ in terms of ¢ from (3): t' = +(1 + Beos )

. Substituting this into (1)

and (2):
ccos® + v csin @’
)= ————t t) = t
z(t) 1+ Bcos@ y() Y(1+ Bcosd)
/ / E/ h’f : !
For a photon, " = hf and p' = — = —. The components of the momentum vector in the S'-frame are
c c

Py, = p' cos® and p, = p’sind’. The four-vector P* is
E’ hf h h
pPH = (_’p;,p;,p’z) = (—f, —fcosﬁ’, —fsin9',0)
c ¢’ ¢ c

The energy E in the S-frame is obtained from the transformation F = v(E' + vp.):

E=xv (hf+v%cos0’> =~vyhf(1+ Scosf)

The energy E(6') = vhf(1+ S cosf’) is maximized when cos 6’ is at its maximum value. This occurs when
cos ' = 1, which corresponds to 8 = 0. Therefore, the photon has maximum energy when emitted in the

forward direction (the same direction as the velocity v).

8.7 Introduction to General Relativity

Motivation Classical Newtonian gravity describes gravita-
tion as a force acting instantaneously at a distance. However,

this framework is incompatible with special relativity, which Romenten Mesier of Phyics J04

asserts that Problem 3 (Black Holes Physics),
Romanian Master of Physics 2012
Problem 3 (Fundaments of Gen-

o The speed of light is finite and invariant.

e Space and time form a unified structure: spacetime. L.
p nd time form a uni ructure: sp im eral Relativity)

General Relativity, formulated by Albert Einstein in 1915,
resolves this incompatibility by replacing the concept of grav-
itational force with the geometry of spacetime.

8.7.1 Operators in General Relativity p H

.

There are different operators in General Relativity. One of the examples is Christéffel _lsym}_jq_lls,l_ﬁzyghx---"li

describe how coordinate axes change from point to point. In curved spacetime (or cven flat_spade /\;K/ith--'J
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curved coordinates), basis vectors are not constant, taking an ordinary derivative of a vector does not give

€« . » .
a tensor and we must correct for the ~bending of coordinates.

Definition. 8.2: Christoffel Symbols

Consider a coordinate basis {e, }. Unlike Cartesian coordinates, these basis vectors generally depend
on position:

e, #0

We define the Christoffel symbols I’l’)y by

=
e, = I‘WeA

Theorem. 8.4: Christoffel Symbols

The Christoffel symbols are defined as

1
Ff;,, - EgAp (OuGvp + Ougup — OpGuv)

0
—— is called the 4-gradient.
ozt

where 0, =

Another example is d’Alembertian operator.

Definition. 8.3: d’Alembertian Operator

A scalar field ¢(z") satisfies the relativistic wave equation
Op =0

This equation can describe
o Electromagnetic waves
» Gravitational waves

e Massless scalar fields
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For a scalar field of mass m, the equation becomes
m2c?
(m + ) =0

This is the relativistic generalization of the Schrodinger equation.

In general relativity, spacetime is curved, and partial derivatives must be replaced by covariant deriva-

tives. The d’Alembertian becomes the Laplace—Beltrami operator:
O¢ = VAV .0

In coordinates, this can be written as

1
-9

Do 0u (V=99"0,9)

&‘

where g = det(g,).

8.7.2 Introduction to Spacetime and Differentiable Manifold
In classical physics, space and time are treated as separate entities:

e Space: a three-dimensional Euclidean arena

e Time: a universal parameter flowing identically for all observers
However, experiments involving high velocities and electromagnetic waves reveal that:

o The speed of light is invariant

o Measurements of time and length depend on the observer
These facts force a radical conclusion:

Space and time are not independent; they form a unified structure called spacetime.

In the curved spacetime, we model spacetime as a differentiable manifold M:

e A manifold is a set of points that locally resembles R", allowing us to define coordinates in a

neighborhood of each point. -~ dl a
I[—_: . Ay

« For spacetime, n = 4 and each point represents an event. An event is somé’g__h'_i_pg t‘hat;'ocd'é‘l'iffé-%tfé Ju!

specific place and time. W O Y

.r,‘_._.\\._.\ .
:_d'

A
;:.?j B

A 2P
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» Smooth functions and tensors can be defined on the manifold, enabling calculus on curved spacetime.

Example. A sphere in R" is a manifold.

Proof. We introduce some mathematical concepts first:

Definition. 8.4: Stereographic Projection

Stereographic projection is a mapping that projects a sphere onto a plane. Specifically, let S* C R™™!
be the n-dimensional unit sphere, and let N = (0,...,0,1) be the north pole. The stereographic
projection 7 : S"\{N} — R" is defined by mapping a point P on S™ (excluding V) to the intersection
of the line through N and P with the hyperplane x, 1 = 0:

m(P) = 1_—“($1,9€2,~~,$n)

where P = (z1,72,...,Z541) € S™.

Definition. 8.5: Stereographic Projection

A topological space is a pair (X, T), where X is a set and 7 is a collection of subsets of X (called

open sets) satisfying:
1. 9, XeT,
2. Any union of elements of 7 is in T,
3. Any finite intersection of elements of 7 is in 7.

The collection 7 is called a topology on X.

Definition. 8.6: Homomorphism

Let X and Y be topological spaces. A function

f: X—=>Y

is called a homeomorphism if

1. fis a bijection (one-to-one and onto),

2. f is continuous,
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3. the inverse function f~': Y — X is also continuous.

If such a map exists, we say X and Y are homeomorphic, meaning they are topologically

equivalent.

J

Theorem. 8.5: Criteria of a Smooth Manifold

A smooth manifold is a space that is locally homeomorphic to R" and admits smooth transitions

between overlapping charts. Demonstrating that the stereographic projection is a homeomorphism

ensures that each point on S™ possesses a neighborhood that topologically resembles R", which is

important in establishing that S™ is a smooth manifold.

Let
N=(0,...,0,1), S=(0,...,0,—1)

be the north and south poles of S™. Define the stereographic projection from the north pole:
v S"\{N} - R"

by
T Ty
N1, Tng) = (i___L__ “.,———————>

Y
— Tn+1 1 -2

As the inverse map is given by

2y, 2y, HyHQ—-l)

-1
T ey Yn) = ey ,
N o) (Hyu2+1 PSS!

and both my and 75! are continuous, 7y is a homeomorphism. Similarly, define
s S"\{S} = R"

by
T T
7TS(£17"'7xn+1): ( S L )

1+mn+1, ',1+xn+1
The two charts
(Sn\{N}aﬂ—N)a (Sn\{S}77TS)

LY
cover S". Each component is a rational function of v, ..., ¥y, with denominator
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on the domain. Hence the transition map 7g o 7@1 is smooth. The stereographic charts provide a smooth
atlas covering 5", and the transition functions are smooth. Therefore, S™ satisfies all the requirements of

a smooth manifold.

8.7.3 Metric Tensor

On this 4-dimensional manifold M, the geometry is described by a metric tensor g,,(x), a smooth, sym-

metric, non-degenerate tensor field:

ds® = g, (z)dxtdz”

where the Einstein’s notation uses Lorentzian signature (—, +, +, +).

Example. In inertial coordinates (t,z,vy, 2),
ds* = —c*dt* + do* + dy* + d=*

which has Lorentzian signature (—, +, +, +).
Locally, at any point p € M, there exists a coordinate system in which the metric reduces to the Minkowski

form 7, and its first derivatives vanish, reflecting the equivalence principle which states that

Locally, the effects of gravity are indistinguishable from the effects of acceleration.

8.7.4 Geodesics

In General Relativity, free-falling particles follow the straightest possible paths in curved spacetime,

called geodesics:
d2x“ + PM dmu@ —
d 2 TP dN dN

In a flat space (Euclidean geometry), the shortest path between two points is a straight line. In a curved
space (like the surface of the Earth), the shortest path is a geodesic.
For timelike geodesics, the proper time 7 is the affine parameter . For null (lightlike) geodesics, there is

no proper time, but an affine parameter still exists to describe the geodesic.

8.7.5 Riemann Curvature Tensor

Curvature is measured by the Riemann tensor: y ’F?j 8
N [ b -”f
0 . o 0 P A P T\ e ¥ "/' ;
R ouv a,urya - 8VF/4<7 + F,u)\rua - Fu)\rua \ L= 4 N\
3 : L Jr“,_',__\ \-‘-.' :
LA \ ¢ f
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Contracting indices yields

RMV = Rf;)\u
The Ricci scalar is
R = g“” RW
8.7.6 Einstein’s Field Equation
The field equations can be written as
1 8tG
Ry, — §Rgl“' + Agu = ?T#V

where
« T,, is the stress-energy tensor which describes the density and flux of energy and momentum.

In the weak-field, slow-motion limit:

Einstein’s equations reduce to Poisson’s equation:
V2® = 47Gp
Hence, Newtonian gravity emerges as an approximation of General Relativity.

8.7.7 Solution to Einstein’s Field Equation

Schwarzschild solution Einstein’s field equations are

8rG
G#V - C—4T#V

Outside a spherically symmetric gravitating body (e.g. outside a star or black hole), there is no matter or

energy:

T,

=0

Hence the field equations reduce to the vacuum Einstein equations:
G =0
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The most general line element consistent with these symmetries is
ds? = =M 2dt? + 22O dr? 4 12(dh? + sin® 0 dp?)

where ®(r) and A(r) are unknown functions. Computing the Einstein tensor components for this metric

and imposing G, = 0, one obtains the differential equations:

d
d_ (7"(1 - 6_2A)) =0
r
&~ Y
Integrating the first equation gives
2w ¢
-

where C' is a constant of integration. Substituting this into the second equation and integrating yields

C

e2®(r) — 1 - 2
r

Thus the spacetime metric becomes
C c\
ds* = — (1 — —) dt* + <1 — —) dr?® + r*dQ?
r r

where dQ? = d6? + sin? 6 d¢®. To determine C, we require that the metric reduces to Newtonian gravity

in the weak-field limit » > C'. In Newtonian gravity, the gravitational potential of a mass M is

oM

(I)N(T) = ,

In General Relativity, the weak-field limit gives

29
Jut = — (1 + 2N)
c

Comparing with

we identify
C 2GM

r c2r
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Hence,
_2GM

2GM

Substituting C'= ——, the metric becomes
c

2GM 20GM\ !
ds2:—(1— S;r )c2dt2+<1— gr) dr? + r2dQ?

This is the Schwarzschild metric. The event horizon occurs where the radial component of the metric

diverges:
2GM
gr—rl =1- 2 =0
c2r
Solving,
2GM
T =
2

which is the Schwarzschild radius.

Friedmann—Lemaitre-Robertson—Walker Metric [t models an expanding universe:

2
ds® = —c2dt* + a(t)? { : _Tkrg + erQﬂ
where dQ* = df* + sin® 0dg¢>.
Define y such that
dv — dr
XTI ke
Integrating gives the relations
r 1 ‘ .
7i sm(\/Ex) Jk>1 sin(y)  Lk=1
T=9x k=0 =9x k=0
1
'h(\/—k> k< —1 inh(y) k=—1
Wa: sin X  sin (x)
as k= —1,0,1 only. The metric then becomes

ds* = —c*dt® + a*(t) [dx* + Sp(x) d?)
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By natural unit ¢ =1,

-1 0 0 0
2
a
0 —— 0
12
G = 1—kr
0 0 a’r? 0
0 0 0 a*r?sin’4
Then
-1 0 0 0
1 — kr?
0 —— 0 0
g = a X
0 0 22 0
1
0 0 —_—
a?r?sin? @
The non-zero Christoffel symbols are
- a
F?j = aag;; = agij
i a g
T kr T 2 T 2\ in2
I = T2 Foo= —r(1—kr?), Ty, =—r(l—kr")sin"0
1
6 _ 1o _
PTO - Frd) - ;

F‘?M) = —sinfcosé, ng) = cot f

Then

For a perfect fluid in comoving coordinates,

T;w = (p + p)Uqu + PAuv
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with U* = (1,0,0,0), so:

1
By R, — §gu,,R + Ag,, = 87GT,,,

i 1 i a\? k
3=~ (=16 |-+ (= 2 —A=87G
a 2( ) a+(a) +a2 s
i :a a\? k:
—3-+3 —+(—) +=| —A=87Gp
a a a a

i a\? 2k i [a\’
—4+2(=-) +=-3|-+|-) +=|+A=87Gp
a a a? a a a?
. . 2
k
ol _ 2) K A =saep
a a a
a A7
—=—T(p+3p)+—

This is the Second Friedmann Equation.

8.7.8 Covariant Derivative

Let V* be a vector field. Under a coordinate transformation * — z*', the partial derivative

o, V# Qx
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does not transform as a tensor because it produces extra terms involving second derivatives of the coordi-
nate transformation. Hence, 0,V* has no invariant geometric meaning. The covariant derivative of a
vector field V* is defined as

vV, VFt=09,VF+TH VA

For a covector A,,,

VA, = 8,4, — T A,

More generally, for a (k,[) tensor,

i=1 j=1
In General Relativity, the covariant derivative is uniquely determined by two conditions:

1. Metric compatibility:
v/\guu =0

2. Torsion-free:

A A
=T,
These conditions yield the Levi—Civita connection:

1
F;/)l/ = Eg)\a (augua + aug,ua - aag;w) (21)

The covariant derivative measures how a vector changes relative to the curvature of the manifold.

It represents the best possible generalization of directional derivatives to curved spaces.

8.7.9 Lie Derivative

Let " be a smooth vector field on a manifold M. It generates a one-parameter family of diffeomorphisms
(a flow)

qé)\ M- M
satisfying

d

0AP) = (@), dolp) =p
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For a scalar field f, the Lie derivative along & is simply

Lef = &"0uf

which coincides with the directional derivative.

Let V* be a vector field. The Lie derivative of V* along & is defined as
LV =09,V =V"0,E! (22)

This expression measures the failure of V* to be invariant under the flow generated by £”. Equation (@)

can be written compactly as

LV =[5 V]

where [€, V] is the Lie bracket:
€, V" =" o,V = Vo8 (23)

Hence, the Lie derivative of a vector field is the Lie bracket.

8.7.10 Killing Vector Field

A vector field £ is called a Killing vector field if the metric remains invariant under the flow generated
by &H:
Egglw = O (24)

where L, denotes the Lie derivative. Using properties of the Lie derivative, the Killing condition is

equivalent to

Vil + V0, =0 (25)

This is known as the Killing equation. Equation (@) states that the symmetrized covariant derivative

of £&" vanishes. Hence, infinitesimal displacements along £ preserve the spacetime interval:
ds® = Guvdxtdx”
In flat spacetime with metric 7,

o Time translation: ¢* = (1,0,0,0)

 Spatial translation: £* = (0,1,0,0)
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« Rotation about z-axis: £ = (0, —y, z,0)

Each satisfies the Killing equation. Minkowski spacetime has 10 independent Killing vectors, corre-
sponding to the Poincaré group.

Let u* be the 4-velocity of a freely falling particle (geodesic):

u’'Vyut' =0
If ¢ is a Killing vector, then

d

= (&) =0 (26)
Proof.

d
E(fuuu) =u"V,(&u")

= u"u'V,§, + §u Vo ut
1
= éuuuu(vugu + Vu&,)

=0

8.7.11 Locally Measured Escape Speed in General Relativity

Consider a static, spherically symmetric spacetime with metric
ds® = —gu(r) dt* + gor(r) dr® + r*dQ’
where g (r) > 0. As the metric is time-independent, it admits a timelike Killing vector
K" = (0,)" = (1,0,0,0)

Let a particle move along a geodesic with tangent vector

dxt
w7
T
If K" is a Killing vector, then the quantity
K, u"
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is conserved along the geodesic. We define the conserved energy per unit mass
= —K,u"

Since K* = (1,0,0,0), we have
Kp = QWKV = (gttv())oao)

and therefore

E = _gttut

For a massive particle, the four-velocity satisfies
wu, = —1
For purely radial motion (u’ = u? = 0), this gives
—gu(u')? + g (u")? = —1

Substituting u' = E/g,, we obtain

E\?2
—Gut (_> + grr(ur)Q =-1
Gt
which simplifies to
. E?
Grr(u")" = ——1
() Gt
A static observer at radius r has four-velocity
1
Ut =——(1,0,0,0)
Gt

The locally measured speed v of the particle is defined by

2

o  (proper spatial distance)®  g,,(u")
B (proper time)?  gu(ut)?
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Using the previous results, this becomes

E2

. | g
2 Gt tt
vETpE Tl m

G

For a particle that just escapes to infinity in an asymptotically flat spacetime,
gr(o0) =1 u"(00) =0

The normalization condition then implies

E=1

Substituting into the expression for v?, we obtain the local escape speed:

Ue2sc =1- gtt(r)

For the Schwarzschild metric,

2GM
-1
gu(r ) ,
Hence,
9 2GM
Uesc =
r

This is the locally measured escape speed by a static observer using proper rulers and clocks.
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9 Thermodynamics

9.1 Kelvin

Definition. 9.1: Kelvin

The Kelvin (K) is the SI unit of thermodynamic temperature such that
Tx = Tc +273.15 (27)

where T refers to the Celsius scale.

Kelvin must be used when formulas involve energy, ratios, or exponential dependence on temperature.

9.2 Pressure and Hydrostatic Equilibrium

Introduction Pressure is a scalar quantity defined as the force applied per unit area. Mathematically,
F
P=—
A

Hydrostatic Equilibrium: Plane-Parallel Case Consider a small cylindrical fluid element of cross-

sectional area A and height dz.

« Gravitational force (downward): The mass of the element is m = pAdz. Hence,

Fy=mg = pgAdz

» Pressure force (upward): The pressure at the bottom is P(z), while at the top it is

P(z+dz) = P 4 dP. The net pressure force is therefore

Fpnet = P(2)A — P(z 4+ dz)A = — AdP

For hydrostatic equilibrium, the total force must vanish:

> F=0 = Fpuu—F,=0
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Hence,

P
—AdP — pgAdz=0 = Ocll—:—pg
z

Hydrostatic Equilibrium: Spherical Symmetry (Stars) Now consider a thin spherical shell inside

a star at radius r with thickness dr.

« Gravitational force (inward): The mass of the shell is

dm = p(r)dV = p(r) dmxridr

The gravitational acceleration at radius r is

where M(r) is the mass enclosed within radius r. Hence, the inward gravitational force is

F,=dmg(r) = 4nGp(r)M(r) dr
« Pressure force (outward): The surface area of the shell is A = 477r®. The net pressure force is

the difference between the outward pressure at r and that at r + dr:

dP
FP,net:P(T)A—P(T—i—dT)A: _d_ 47T7“2d7”
T

Hydrostatic equilibrium requires
Y F=0 = Fpuu—F,=0

Therefore,

dP
= drridr — AxGp(r)M(r) dr = 0
”

which yields the stellar hydrostatic equilibrium equation:

ar GM (r)p(r)

dr 72
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Remark. In addition to hydrostatic equilibrium, stars also satisfy thermal equilibrium, meaning that

the energy generated in the core equals the energy radiated from the surface:

Lcore = Lsurface

where L denotes the luminosity. Stellar equilibrium refers to the combined balance of gravitational, pres-

sure, and energy-transport processes that allow a star to maintain a stable structure over long timescales.

9.3 Ideal Gas Law

The Ideal Gas Law is a fundamental equation in thermodynamics that describes the behavior of an ideal
gas. It establishes a relationship between the pressure P, volume V', temperature T, and the number of

moles of gas n. The equation is expressed as
PV =nRT

where
e P is the pressure of the gas,
e V is the volume of the gas,
e n is the number of moles of gas,
R is the universal gas constant (R = 8.314 J/mol K),

o T is the temperature of the gas in Kelvin.

For a gas undergoing a change in volume at constant pressure, the work done by the gas is given by

W = PAV

9.4 First Law of Thermodynamics

It states that energy cannot be created or destroyed, only transformed. It is expressed mat_hemétically as

2
a"'-_.

s
,,( o

where -
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e dU is the change in internal energy of the system,
e 0@ is the heat added to the system,

o OW is the work done by the system.

Q— AU —— W

system

Process Condition Description

Adiabatic 0Q =0 No heat exchange with surroundings;
temperature changes due to work done

Isothermal T = constant Temperature remains constant; heat
absorbed equals work done

Isobaric P = constant Pressure remains constant; volume
changes with temperature

Isochoric (Isovolumetric) | V' = constant No work done since volume is constant;
heat changes internal energy

Polytropic PV"™ = constant Generalized process covering isother-
mal, adiabatic, and isobaric cases

Cyclic Final state = Initial state Net change in internal energy over one
cycle is zero

Reversible Quasi-static with no losses | Idealized process that delivers maxi-
mum possible work

Irreversible Finite gradients and friction | Real processes; entropy production is
positive

Table 2: Thermodynamic processes, their conditions, and descriptions

ar
- Fie o
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9.5 Second Law of Thermodynamics

Definition. 9.2: Entropy

Entropy is a measure of the disorder or randomness of a system. For a reversible process, the change

in entropy dS is given by the heat transferred d@ divided by the temperature 7"

_ erev
T

as

Theorem. 9.1: Sackur—-Tetrode Equation

V (4rmEN*?\ 5
S = Nkg (m (N (W) ) i 5)

where

S is the entropy,

N is the number of particles,

V' is the volume,

m is the mass of a gas particle, and

E is the internal energy

Theorem. 9.2: Second Law of Thermodynamics

The second law of thermodynamics states that the entropy of an isolated system tends to increase

over time.

dsS >0

Theorem. 9.3: Gibbs Free Energy

The Gibbs free energy G is related to entropy through the following equation:

Clelil =5 =0 4 BV =78

where H is the enthalpy, 7" is the temperature (kept constant), P is the pressure (kept constant),
and S is the entropy.
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9.6 Heat Capacity

Definition. 9.3: Heat Capacity

The heat capacity at constant volume, Cy, is defined as the amount of heat required to raise the

temperature of a system by one degree Celsius (or one Kelvin) while maintaining constant volume.

_(9Q
S (a—T>V

where () is the heat added to the system, and T is the temperature. The subscript V' indicates that

Mathematically, it is expressed as

the volume is held constant.

Since the system is not allowed to do any work (because the volume is fixed), the heat added to the system

only changes the internal energy:

dQ = dU

where dU is the change in internal energy.

For an ideal gas, the heat capacity at constant volume is related to the molar heat capacity Cy by

oU
Cv= (a—T>V

For an ideal gas, the internal energy U is a function of temperature alone, and the specific heat capacity

can be derived from the equation of state.

Definition. 9.4: Heat Capacity

The heat capacity at constant pressure, Cp, is defined as the amount of heat required to raise the

temperature of a system by one degree Celsius (or one Kelvin) while maintaining constant pressure.

_(9Q
2 (a—T>P

where () is the heat added to the system, and T is the temperature. The subscript P indicates that

Mathematically, it is expressed as

the pressure is held constant.

by the system
dQ = dU + PdV
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For an ideal gas, the heat capacity at constant pressure is related to the molar heat capacity Cp by

oOH
Cr = (a—T>P

Theorem. 9.4: Mayer’s Relation

cp—cy =nR

where n is the number of moles of the gas and R is the universal gas constant.

Proof. By the first law of thermodynamics,

dU = 6Q — pdV = nCydT

where C'y is the heat capacity at constant volume, and n is the number of moles. For the heat added at

constant pressure, we use:

0Q = nCpdT

where C'p is the heat capacity at constant pressure.
By the ideal gas equation of state,
pV =nRT

Differentiating this equation with respect to temperature at constant pressure:

pdV + Vdp = nRdT

At constant pressure, dp = 0, so we have:

pdV = nRdT

Substitute pdV = nRdT into the equation:

nCydT = nCpdIl — nRdT

CV:CP—R —— CP—CV:TLR
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Definition. 9.5: Heat Capacity Ratio

In an adiabatic process, there is no heat exchange with the surroundings (d@QQ = 0). The first law of

thermodynamics gives:

dU = —PdV

For an ideal gas, the relationship between pressure and volume during an adiabatic process is governed by
the equation:

PV7 = constant

9.7 Blackhole Thermodynamics

Black hole entropy is a measure of the amount of information that is hidden inside a black hole. The
famous Bekenstein-Hawking entropy formula links the entropy of a black hole to the area of its event
horizon, rather than its volume. This result was first derived by Jacob Bekenstein and later confirmed by

Stephen Hawking:
k)BCBA
5= "4am

Proof. The first law of black hole thermodynamics is given by

dM = TdS + ®dQ + QdJ

where M is the mass, T is the temperature, S is the entropy, ® is the electrostatic potential, ) is the
charge, and J is the angular momentum.

For a non-rotating, uncharged Schwarzschild black hole, the first law reduces to

dM =TdS

which is similar to the first law of thermodynamics, and implies that the black hole mass is

entropy via its temperature. The area of the event horizon is

2
A =167 <G]2W)
1
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Using the fact that the temperature T' of a Schwarzschild black hole is given by the Hawking temperature,

B he
- 8tGM

(The derivation is out of scope of this note.)

The first law dM = T'dS implies

dM dM 8TtGM

8rGM

ds dM

Integrating with respect to M,
8tGM?
S =
he?

GM\?
Using the expression for the area A = 167 ( 5 ) ,
c

ArG
Substituting this into the entropy expression, we get

k‘BCSA
5= AGh

9.8 Kinetic Theory

9.8.1 Mean Free Path

Let the number density of the gas (the number of particles per unit volume) be n, and let the cross-sectional
area for a collision between two particles be o. The cross-sectional area o depends on the type of collision
and the physical properties of the particles involved. If we assume spherical particles with radius r, the
collision cross-section is given by

o =7(2r)* = 4mr?

Next, the relative velocity between two particles in the gas is on the order of the mean speed of the particles

Uavg. The total rate of collisions per unit time per particle is

Collision rate = nov,ye
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The mean free path \ is defined as the average distance a particle travels before undergoing a collision.

The relationship between the mean free path and the collision rate is given by

1 1 1

Collision rate  NoVayg 1 - 4712 - Vgyg

9.8.2 Boltzmann Distribution and Maxwell-Boltzmann Distribution

The Boltzmann distribution, also known as the Gibbs distribution, is a fundamental probability distribu-
tion in statistical mechanics that describes the statistical properties of a system in thermal equilibrium
at a fixed temperature. It provides the probability that a system will be in a particular microstate with

energy F; when it is in contact with a heat bath at temperature 7.

Formulation and Derivation Consider a system in thermal equilibrium with a large reservoir at
constant temperature 7. The probability P; of finding the system in a particular microstate ¢ with energy
FE; is given by

1

P = Ee_ﬂEi

where

- p

= is the thermodynamic beta
kT Y

« /= Z e PEi is the partition function
i

The partition function Z serves as a normalization constant ensuring that ZPi = 1. It contains all

(2
thermodynamic information about the system.

Proof. Statistical mechanics often uses the principle of maximum entropy. The entropy of a discrete set
of probabilities {P;} is
S=-ks» PP
i

as S = kpIn ) (where € is the number of micro-states by Statistical Mechanics). We want to maximize S

subject to the constraints:

Z P, =1 (normalization) ”*’_
- F 4 -
Z P,E; = (E) (average energy fixed) 'r'f ,; ~ ,, '
4 k=3 °_ \\
©Lr @
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Using Lagrange multipliers o and 3, define

L=—kpy PP, —a (ZB - 1) - B (ZPZEZ- - <E>>
Setting the derivative with respect to P; to zero:

oL
OF;

which gives

H — €_l_a/kB€_BEi/kB

Defining Z = e!te/kz — Z e PEi/ke e get the familiar form:

i

Maxwell-Boltzmann Distribution The Maxwell-Boltzmann distribution describes the statistical dis-
tribution of speeds (or velocities) of particles in an ideal gas at thermal equilibrium. It is a special case of
the Boltzmann distribution applied to the translational kinetic energy of non-interacting particles.

For an ideal gas of N identical particles of mass m at temperature 7', the probability density function for

finding a particle with velocity v = (v, v,,v,) is

B m \*? m|v|?
f(V) B (QWICBT) “xp (_ QkaT)

This three-dimensional distribution factorizes as f(v) = f(v,)f(vy)f(v.), where each component distribu-

tion is Gaussian

f(va) “ v,
Vo) = €x - , =I,Y,Z
omknT P\ T2k, T Y

More commonly used is the distribution of speeds v = |v|, obtained by integrating over all directions in

2 m 3/2 7’)11}2
= 4 —
f(U) i (27TI€BT> exp ( Qk?BT)

The factor 47v? arises from the spherical shell volume element in velocity space. {,; X

}

velocity space:

e

Proof. Consider an ideal gas with N particles in thermal equilibrium at temp/erat;urﬁ T‘ Eaﬂh /Ifﬂrtlcle

has a mass m and a velocity vector v = (v, vy, v,). The total energy of a partlcle 1s purefy Metlc o =5
~ \
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1
E= im(vfc + vl 4 v?)

According to the Boltzmann distribution, the probability of a particle having energy E is

P(E) o e~ E/ksT

Note that
P(Uamvyvvz) = f(vw)f('vy)f(vz)
o) = AemamiioT = gy, 2
As
0o 00 mv
/ f(vg) dv, =1, / Ae #Tdy, =1
and by
/ e~ dy = \/E
. a
we have
27TI{JBT m
V. m — \/ 2rkgT
Hence,

m _ mvi2

) = 2kgT
f(w) \ 2rksT¢
v =4 /vi+ 402

The probability density function of speeds, F'(v), can be obtained by transforming to spherical coordinates

The speed of a particle is

in velocity space:

F(v)dv = 470 f(v,) f (v,) f (v.)dv

Hence,

m 3/2 'mv2
F(v) = 4n (27T/~cBT> v?e 25T

Three important characteristic speeds are derived from this distribution:
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1. Most probable speed (mode):

2kpT 2RT
Vmp = m - M

2. Mean speed:

(o) = \/SszT_ \/8RT
n mm N 7M

o _ [3ksT _ [3RT
rms — m - M

3. Root-mean-square speed:

where R = Nkp is the gas constant and M = N, m is the molar mass.

9.9 Boundary Conditions

Solving the stellar structure equations requires proper boundary conditions:

« At the Center (r = 0):

« At the Surface (r = R):
P(R) — Psurface ~ 07 T(R) = Teff

These conditions ensure the solution matches physical reality: zero mass at the center, and finite temper-

ature and pressure at the surface.
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9.10 Case Study

Suppose a static spherical star consists of N neutral particles with radius R with 0 <0 <7, 0 < ¢ < 27,
satisfying the following equation of states

Tr — 1o

PV = Nk—ln(TR/To) (1)

where P and V are the pressure inside the star and the volume of the star respectively, k is the Boltzmann
constant, Tk and Ty are the temperatures at the surface r = R and the temperature at the center r = 0

respectively. Assume that Tx < Ty.
(a) Simplify the stellar equation of state (1) if AT = Tr — Ty — 0 (this is called ideal star) (Hint: Use
the approximation In(1 + z) ~ z for small z).

Suppose the star undergoes a quasi-static process, in which it may slightly contract or expand, such

that the above stellar equation of state (1) still holds.

The star satisfies the first law of thermodynamics:

Q= AMe +W . iy
_-_i,'_é};tﬁé;ﬁghf“gﬁ% |

where ), M, and W are heat, mass of the star, and work respectively, whild
the vacuum and AM = Mgpa — Minitial- - N\ é‘ﬁ.{
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In the following, we assume Ty to be constant, while T = T varies.

(b) Find the heat capacity of the star at constant volume Cy and at constant pressure Cp, expressed in

Cp and Cy (Hint: Use the approximation (1 + )" ~ 1 + nz for small z).

Assuming that C'p is constant and the gas undergoes the isobaric process so the star produces the

heat and radiates it outside to the space.

(c¢) Find the heat produced by the isobaric process if the initial temperature and the final temperature

are T; and T, respectively.
(d) For the next parts, assume the star is the Sun.

(e) If the sunlight is monochromatic with frequency 5x 10** Hz, estimate the number of photons radiated

by the Sun per second.

(f) Calculate the heat capacity Cp of the Sun assuming its surface temperature varies from 5500 K to

6000 K in one second.

Solution.
(a) Defining AT = Ty — Ty and AT =~ 0, we have

PAV AT

Nk In(1+AT/Ty)

Using In(1 + AT /Ty) ~ AT /Ty, we then obtain

PAV

T
Nk 0

(b) The internal energy of the star is U = Mc*(U(T) = M(T)c* for ideal star). Hence, the constant

volume heat capacity of the star has the form:
A AM
o (B2) _ (A
AT /., AT J,,

star is

C(AQ\  [(AMN , AV
Cr = (E)P— (ﬁ)vc AT T
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for small AT. Defining AT = Ty — T}, then

PAV Ty —Ty+ AT T — Ty
Nk In((Ty + AT)/Ty)  In(Ty/Tp)

Using the approximation

T\ AT
In((T; + AT)/Tp) ~ In (To) +
1 1 1 AT

~
~

(T, + AT)/Ty) ~ n(T1/To)  T1In(T1/Tp)° Th

then we have

PAV 1 (T —Tp)/T
ar S (1 - 1n<T/To>) n(T/To)

where 77 = T'. Finally, we obtain

= (&)~ (5), 3w = (=)

(c) Since Cy is constant, the heat produced by the star is given by

Qu = Cy(Ty — T}) + PAV

Ii-T, Ti-Tp
In(7/To)  In(Ti/To)

Qu =Cy(Ty —T;) + Nk

(d) Energy per second radiated by the Sun E = Lo = Nhv where N is the number of photons. Hence

L 3.90 x 10%
iOR. X = 1.195 x 10* photons

N — —
hv  6.626 x 10734 x 5 x 1014

(e) Energy per second radiated by the Sun is proportional to mass defect of the Sun

AM >
L~ =
© At
Hence, g
AMc  3.96 x 10% 1 3.96 x 1026 al®d”’
Oy — - — T J/K=T792x102J/K;
YT AT Lz ™ 6000 - 5500 / % K G
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10 Spectroscopy

10.1 Basic Concepts

e (Spectrum) The diffraction of light produces a spectrum, which can be observed as a series of

bright and dark fringes.

thermal
radiation
107° 10~* 1072 1 102 10* 10°
Ultra-
violet
cosmic Gamma
X-rays infrared radio waves
rays rays
107° 1073 107! 10! 10° 10°

Visible Spectrum

0.38 048 0.58 0.68 0.78

blue green yellow red

e (Absorption) Absorption occurs when atoms or molecules in a celestial object absorb photons of

specific energies, raising electrons to higher energy levels.

o (Emission) Emission occurs when excited electrons drop to lower energy levels, releasing photons

of specific energies, forming emission lines.
Ephoton = Eupper - Elower

This leads to absorption lines in the spectrum.

(4) Spectral lines reveal chemical composition, temperature, pressure, and velocity fields (yié Doppler

shifts). G € -
(5) (Scattering) Scattering occurs when photons interact with particles, changin dire¢tion and séme- |
2 '8 | ¢

times energy: -
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— Rayleigh scattering: Elastic scattering by particles much smaller than wavelength.
— Thomson scattering: Elastic scattering by free electrons.

— Compton scattering: Inelastic scattering, photon loses energy. There is a relation derived

by Compton:

h

MeC

N =\ =

(1 —cosf)

where

(i) A is the initial wavelength of the photon,

(ii) X' is the wavelength of the scattered photon,
(iii) h is Planck’s constant,

(iv) me is the mass of the electron,

(v) cis the speed of light,

(vi) 0 is the scattering angle, which is the angle between the direction of the incident and

scattered photon.

(6) (Splitting) Splitting occurs when a single spectral line divides into multiple components due to
external or internal interactions. The Zeeman effect is the splitting of spectral lines in the presence

of a magnetic field B. For transitions with no spin, a single spectral line splits into three components:
AE =mugB, m;=0,+1

where pp is the Bohr magneton, B is the magnetic field strength, and m; is the magnetic quantum
number.

The Stark effect is the splitting of spectral lines due to an external electric field E:

AF x F

(7) (Broadening) Broadening refers to the widening of spectral lines beyond their natural linewidth.

— Due to the finite lifetime 7 of excited states, spectral lines have an intrinsic Width governed by

the uncertainty principle. = S ’/ ?j a
— Stellar rotation causes line broadening due to different Doppler shifts across the s‘cell‘ar dlﬂ’ # !
=" I . r J

. /"‘*&é
S g
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10.2 Spectral Radiance

The spectral radiance (power emitted per unit area per unit solid angle per unit wavelength) is given by

Planck’s law:

where A is the wavelength.
Astronomy has evolved from visible-light observations to encompass the entire electromagnetic (EM)

spectrum. Each wavelength band reveals unique astrophysical phenomena, as expressed by Planck’s law.

Band Wavelength Energy Range Temperature (K) | Primary Sources
Range
Radio > 10cm <124 x10°eV < 0.1 Cold gas, pulsars
Microwave | 1mm — 10 cm 124 x 107°eV -~ 0.1 -10 CMB, molecular
1.24 x 1073 eV clouds
Infrared 700 nm — 1 mm 1.24 x 107%eV — 10 - 10* Dust, planets, cool
1.77eV stars
Visible 400 nm — 700 nm 1.77eV - 3.1eV 10* Stars, galaxies, neb-
ulae
Ultraviolet | 10 nm — 400 nm 3.1eV - 124eV 10* - 10° Hot stars, quasars
X-ray 0.0l nm — 10 nm 124 eV — 124 keV 10° - 108 Black holes, super-
novae
Gamma-ray | < 0.01 nm > 124 keV > 108 GRBs, nuclear pro-
cesses

Figure 8: Electromagnetic spectrum bands in astronomy

Limiting cases:

« Rayleigh-Jeans Law (long wavelengths, hc < M\kgT):

2ckpT a, W 7
et s

Puee 10 gy Y
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« Wien’s Law (short wavelengths, hc > \kgT):

2hc?
B)\(T)% )\5 e—hc/()\kBT)

The wavelength at which the emission is maximum:

Amax] = 2.898 x 107°m K (Wien’s Displacement Law)

10.3 Stefan—-Boltzmann law
j* = oT*
where
« j*is the total radiative flux (power per unit area, (W/m?)),
T is the absolute temperature of the blackbody in Kelvin (K),

e o is the Stefan—Boltzmann constant:

o = 5.670374419 x 1078 Wm2K*

For a real object with emissivity (¢) (0 < e < 1), the law generalizes to
j=eoT?

Proof. The total radiated power per unit area is obtained by integrating over all frequencies and solid

angles from Planck’s law:

j*:/ /B(V,T) cos 0dQddv
0o Ja
= 7T/ B(v,T)dv
0
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hv

Let t = —.
et x T

L 2mh [ V3 p
T2 ), et 1%

2 k’T4 [e’¢) 3
= 7T(B)/ v dx
0

h3c?

4
The integral evaluates to 71T—5, giving

10.4 Doppler’s Effect

The Doppler effect is a fundamental phenomenon in wave physics where the observed frequency of a
wave changes due to relative motion between the source and observer.

For non-relativistic speeds (v < ¢), where ¢ is the speed of light:

fobs - fbl“C
1 :I:

(Source Moving, Observer Stationary)

C

where + for receding source, — for approaching source.

Jobs = fere (1 + &> (Observer Moving, Source Stationary)
c

In astrophysics, we typically measure the radial velocity v, through the wavelength shift:

AN >\obs - )\0 Uy
/\0 )\0 C

where
e )\ represents the rest wavelength,
e Aobs represents the observed wavelength, and

« v, represents the radial velocity which is the motion of a star along the line of sightﬂ\EI (positive for

recession )

1 The total velocity of a star is given by v = \/ Ve dial T vt angential where vpa4ia1 is the radlal *v.elﬁmty,, and ut@n/génws |

the tangential velocity, which can be derived from proper motion and distance. Proper mo‘tleﬁ refefs t’o the aﬁgular J
movement of a star across the sky, usually measured in arcseconds per year. . > )
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For astronomical objects moving at significant fractions of light speed, we must use the relativistic formula:

>\0bs _ 1+6 or fobs _ 1_B
Ao 1-p fo 1+3

The redshift z is defined as

Aobs — Ao AN
N X
For relativistic speeds,
1+4
1 =4/—
+z =3
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11 Electromagnetism

11.1 Lorentz’s Force

The Lorentz force law describes the force exerted on a charged particle moving through an electromagnetic

field. It is given by
F=¢E+vxB)

o F is the force on the charged particle,
o ¢ is the charge of the particle,

o E is the electric field,

o v is the velocity of the particle, and

o B is the magnetic field.

11.2 Maxwell’s Equation

Definition. 11.1: Del Operator

For continuously differentiable vector field F = F,i+ F,j + F.k, define V =

0 0
+a—y+£ Then

oz
F. _ (OF. OF)\. (0F, OF.\. (0F, OF,
* 0z andVXF_<8y 8z)l+<8z 8:}5)‘]+(6x 8y>k

which V - F measures the net flow of the field out of an infinitesimally small volume around a point.

Theorem. 11.1: Differential Form of Maxwell’s Equation

For free charge density p (S.I. unit: C/m?) and free current density J (S.I. unit: A/m?),

v.E="
€0
V-B=0
0B
VXE——E

OE

B = 1] =
V x Ho +M0€oat

(Gauss’s Law for Electricity)

(Gauss’s Law for Magnetism)

(Faraday’s Law of Induction)

(Ampere-Maxwell Law)
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Theorem. 11.2: Integral Form of Maxwell’s Equation

For free charge density p and free current density J, the Maxwell’s equations in integral form are:
1
/ E-dA=— [ pdV (Gauss’s Law for Electricity)
S € Jv
/ B-dA=0 (Gauss’s Law for Magnetism)
s
7§ E-dl= _4 / B dA (Faraday’s Law of Induction)
c dt Js
yﬁ B-dl=pg / J-dA + ,uoeoi / E . dA (Ampeére-Maxwell Law)
c s dt Js

11.3 Poynting Vector

The Poynting vector describes the directional energy flux (the energy transfer per unit area per unit time)

or power flow of an electromagnetic field. It is given by

S:iExB
Ho

where
e S is the Poynting vector,
o E is the electric field, and

o B is the magnetic field.

11.4 Optics

11.4.1 Wavefunction

The displacement of a point on a string in simple harmonic motion can be modeled by a sinusoidal function.

The solution to the wave equation for a string under tension is:
o(z,t) = Asin(kzr — wt + 0)

where

e A is the amplitude of the wave,
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2
o« k= Tﬁ is the wave number (with A being the wavelength),

e w =27 f is the angular frequency (with f being the frequency), and

e 0 is a phase constant.

11.4.2 Lens

Theorem. 11.3: Refractive Index

The refractive index of a medium is defined as the ratio of the speed of light in vacuum to the

phase velocity of light in the medium:

_c
n=-—
v
Without free charge, Ampere’s law states that
OE
V xB=pue—
BT R
Take the curl of Faraday’s law:
0
Vx(VxE)=—-—(V xB)
ot
Substituting the expression for V x B yields
O°E

VX(VXE):—HﬁW

Using the vector identity
V x (VxE)=V(V-E) - V’E

and Gauss’s law, we obtain

O°E
2
0’E
2
V°E = W:W

The standard wave equation for a field E propagating with speed v is

1 0’E
2E - =
v v2 Ot?
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Comparing with the equation above, we identify

1_
2

Therefore, the speed of electromagnetic waves in the medium is

1
V= —

N/

€
. Then n = /e,u, where ¢, = — is the relative permittivity (dielectric
€olo €0

constant) of the medium and p, = £ s the relative permeability of the medium. For p, = 1, n =~ /€.
Ho

Theorem. 11.4: Snell’s Law

Consider an interface between two homogeneous, isotropic media with refractive indices n; and ns.

For speed of light, ¢ =

Let 6, and 65 denote the angles that the incident and refracted rays make with the normal to the

interface, respectively. Snell’s law states that

nysin @y = ng sin 6y

Theorem. 11.5: Lens Formula

where

o fis the focal length of the lens, which is the distance from the optical element (lens or mirror)
to the point where light converges to form an image and determines the magnification and

field of view of the telescope,
 wu is the object distance (distance from the object to the lens), and

v is the image distance (distance from the lens to the image).

The most widely used convention is the Cartesian sign convention:
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Parameter

Sign Convention

Object distance (u)

Image distance (v)

Focal length (f)

Height of object (h,)

Height of image (h;)

Negative (for real objects)

Positive (for real images)

Negative (for virtual images)

Positive (for convex/ converging lenses)
Negative (for concave/ diverging lenses)
Positive (upward from principal axis)
Positive (upward from principal axis)

Negative (downward from principal axis)

Table 3: Sign conventions for lens formula

Definition. 11.2: Optical Power

For a lens with focal length f, the power is given by

F=5

Theorem. 11.6: Combination of Thin Lens

For two or more thin lenses close together, the effective power is given by Z P.

where

f is the focal length of the lens,

Theorem. 11.7: Lens Maker’s Equation

Loy [LoL o]

Rl R2 an R2

e n is the refractive index of the lens material,
Ry is the radius of curvature of the first surface of the lens,

Ry is the radius of curvature of the second surface of the lens,
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[ e ( is the thickness of the lens. ]

Proof. We will derive the case of thin lens where d — 0.
Consider a spherical refracting surface with radius of curvature R separating two media with refractive
indices n; and nsy. Let C' be the center of curvature and V' be the vertex of the spherical surface. We

use the sign convention:
e Distances measured from V

e« R>0if C is to the right of V' (convex toward object)

Object distance u = —s, (negative if object is left of V)

Image distance v = s; (positive if image is right of V)

Using the paraxial (small-angle) approximation:
sinf ~ 0, tanf =40

for rays making small angles with the optical axis.
Consider a point object O on the optical axis, sending a ray to point A on the spherical surface at height

h above the axis. From triangle OAC),
Angle of incidence: ¢, = a + ¢

From triangle IAC,
Angle of refraction: 6y = ¢ — 8

where

with u = —s, < 0, v > 0, and R as given.
Snell’s law in paraxial form:

nyty = nqbsy

Substituting:
ni(a+ @) =na(¢ — B)
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Consider a thin lens of refractive index n; surrounded by medium n,,. The lens has:

« First spherical surface: radius Ry (center C)
o Second spherical surface: radius Ry (center Cy)

o Thickness negligible compared to object/image distances (thin lens approximation)
Sign convention:

o Light travels left to right
o R > 0 if center of curvature is to the right of surface
« Object distance s, > 0 (real object left of lens)

o Image distance s; > 0 (real image right of lens)

From medium 1 n,, to medium 2 n;,

Since u; = —s,,
Moy Pm U T (*)

U1 So R

From medium 1 n; to medium 2 n,,, the object for second surface is the image from first surface. For thin

lens, object distance is —uvy.
Nom ny Ny, — MYy

S; (—Ul) R2

Nm ny Ny, — Ny

— *k
Si V1 RQ [ . ( )
ny ny — Nm N ny Ny — 1Y N . .
From (*), — = ———— — . From (**), — = — —. Equating béth e
( ) V1 Rl So ( ) V1 R2 Si d & hth . )
simplifying gives L
MmN ( ) 1 1 =
—_— = Ny — nm _— — ke
So Si : R2 R1 ?
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For s; = f (image at focal point),

Let n,, =1 and n; = n.

11.5 Diffraction and Interference

11.5.1 Principle of Superposition

The principle of superposition states that when two or more waves overlap in space, the resultant
displacement at any point is equal to the algebraic sum of the individual displacements at that point. Let

two harmonic waves be given by

yi1(x,t) = Ay sin(kxr — wt + ¢1)

yo(z,t) = Agsin(kxr — wt + ¢»)

According to the principle of superposition, the resultant wave is

y(.’[‘,t) = y1<5(3,t) + yQ(xvt)

= A;sin(kx — wt + ¢1) + Agsin(kz — wt + ¢)

Using the trigonometric identity

sina + sin § = 2sin b coS

we get

y(x,t) = 2Acos <¢2 g ¢1> sin <k’:c —wt + @)

where A is the effective amplitude.
o Constructive interference occurs when ¢ — ¢y = 2nm.

 Destructive interference occurs when ¢y — ¢y = (2n + 1)7.
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11.5.2 Complex Number

Recall that a complex number z is written as

z=x+ 1y

where x is the real part, y is the imaginary part, and ¢ = v/ —1.

Theorem. 11.8: Euler’s Formula

0

e’ = cosf +isinf

This is extremely useful in wave physics because oscillating quantities like A cos(wt + ¢) can be represented

as the real part of a complex exponential:
Acos(wt 4 ¢) = R(Ae'@H9)

11.5.3 Young’s Double-Slit Experiment

Consider two slits separated by distance d illuminated by coherent light of wavelength A. At a point on
a screen at distance L, the path difference (which is defined as the difference in the distance traveled by

two waves from their respective sources to a common point.) is
0 =dsinf

where 6 is the angle from the central maximum.

The condition for constructive interference (bright fringes) is
dsind =mA, m=0,£1,£2,...

For destructive interference (dark fringes),

dsinf = (m~|— %) A
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For small angles, sinf ~ tanf = f’ where x is the fringe displacement. Then the fringe width is

AL
Ap = 22
T

11.5.4 Single-Slit Diffraction

Diffraction refers to the bending of waves around obstacles and apertures. Consider a slit of width a. The

condition for minima in the diffraction pattern is
asind =mA, m==+1,+2 ...

The central maximum is twice as wide as the secondary maxima. The intensity at angle 6 is given by

sin(ﬁ))2 5= masin 0

1(0):10( 5 -

11.5.5 Rayleigh’s Criteria

Two point sources are said to be just resolved if the central maximum of one diffraction pattern coincides
with the first minimum of the other. The Rayleigh criterion gives the limit at which two point sources can

be resolved:

A
Proof. Consider a circular aperture of diameter D. For monochromatic light of wavelength A, the far-field
(Fraunhofer) diffraction pattern of a point source is the Airy pattern, whose intensity is given by

2J; (kasin )]
ka sin 6

10) = I {

where a = D/2, k = 2w/, J; is called the Bessel function of the first kind of order 1E, and 6 is the angular
distance from the optical axis.

The first zero of Ji(x) occurs at x &~ 3.8317. Let x = kasinf. Then

9 -t
kasinfy. — 3.8317 — %“ sin . — 3.8317 G

2 o

d ~
which is the solution to 22 + 252 4 (z? — 1)y = 0 in the form of J;(z) = Z :

2 a9y
dx? dx

I'(z) = / z* e ™" dx for R(z) >0
0
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Hence,
Sl A 3.8317\ ~ 1.22)
T on(D/2) D
For small angles (# in radians),
O i &~ 1.22
min D

This O, is the angular radius of the Airy disk (to the first dark ring).

11.6 Polarization

11.6.1 Introduction

Polarization describes the direction in which the electric field vector of a light wave oscillates. Light can

be

« Unpolarized: The electric field points in random directions (like sunlight).

Linearly polarized: The electric field oscillates in a single direction.

Circularly polarized: The electric field rotates in a circle as light travels.

Elliptically polarized: A general case where the electric field traces an ellipse.

Polarize,

EO Cos @

There are some methods for polarization:

« Polarization by Reflection: When light is reflected at a certain angle (Brewster’s angle, 0p), the

reflected light becomes completely polarized:

where n; and nsy are refractive indices of the two media.
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« Polarization by Absorption: Polarizing filters only allow electric field components in a particular
direction to pass through. When linearly polarized light passes through a polarizing filter, the

transmitted intensity [ is given by
I = Iycos® @ (Malus’s Law)

where

— I is the initial intensity of the light.

— 0 is the angle between the light’s polarization direction and the axis of the polarizer.

11.6.2 Faraday’s Rotation

The Faraday effect, or Faraday rotation, is a magneto-optic phenomenon where the plane of polarization
of linearly polarized light is rotated when the light propagates through a material subjected to a strong,
static magnetic field aligned in the direction of propagation. This effect is one of the first historical pieces
of evidence linking light with electromagnetism.

When linearly polarized light passes through a transparent material of length L that is immersed in a
magnetic field B (parallel to the direction of propagation), the angle of rotation /3 of the polarization plane
is given by

B =VBL
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12 Quantum Mechanics

12.1 Atomic Structure

12.1.1 Historical Development

« Thomson’s Model (1897): "Plum pudding” model with electrons embedded in positive charge
e Rutherford’s Model (1911): Nuclear model from alpha scattering experiments
« Bohr’s Model (1913): Quantized electron orbits

e Quantum Mechanical Model: Electron clouds/orbitals

12.1.2 Introduction
The atom consists of
)

o Nucleus: Protons (p") and neutrons (n)

» Electrons: Negatively charged particles in orbitals

Particle | Symbol | Charge | Mass (u)

Proton | por H +1 1.007276
Neutron n 0 1.008665
Electron e -1 0.000549

Table 4: Basic atomic particles

For an element X,

72X
where
o A is the mass number (protons + neutrons),
e Z is the atomic number (number of protons), and ' = >

« we can define N to be neutron number (N = A — 7) - A =\ S
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Example. é2Cﬁ has 6 protons and 6 neutrons.

The actual mass of a nucleus is less than the sum of its constituent particles:
Am = (Zmp + Nmn) — Mhucleus

where
o Am represents the mass defect,
» m, represents the mass of proton,
e m, represents the mass of neutron, and
* Muucleus Tepresents the measured nuclear mass.

According to Einstein’s mass-energy equivalence

E = md?

The binding energy is
BE = Am - ¢

More conveniently, using atomic mass units (u) where 1u = 931.5 MeV /c*:
BE (MeV) = Am (u) x 931.5

12.1.3 Nuclear Decay

Type Emitted Particle | Change in Nucleus | Penetration
Alpha (o) 5He nucleus Z—=7Z—-2,A—>A—-4 Low
Beta (57) Electron (e™) n—pte +v Medium
Beta (57) Positron (e™) p—ont+e+v Medium |
Gamma () Photon () No change in Z or A ;

Table 5: Types of radioactive decay
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Radioactive decay follows first-order kinetics:
N(t) = Noe™™

where
o N(t) represents the number of nuclei at time ¢,

o Ny represents the initial number of nuclei, and

In2
e A= e represents the decay constant where t; /5 is half-life (time for half the nuclei to decay).

12

12.1.4 Neutrinos

Introductionn Neutrinos are elementary particles that are part of the lepton family. They are electri-
cally neutral and have an extremely small mass, making them very difficult to detect. Neutrinos interact
only through weak nuclear force and gravity, which is why they pass through matter almost unaffected.

The three types of neutrinos correspond to their associated charged leptons:
 Electron neutrino (v,)
+ Muon neutrino (v,)
« Tau neutrino (v,)

These particles are produced in various high-energy processes, such as nuclear reactions in the Sun and

other stars, as well as in cosmic ray interactions and supernovae.

Solar Neutrinos The Sun is a primary source of neutrinos, particularly electron neutrinos (v,). These
solar neutrinos are produced during nuclear fusion processes that take place in the Sun’s core. The
dominant fusion reaction in the Sun is the proton-proton chain, which is responsible for the majority of
the energy production. In this process, four protons fuse to form a helium nucleus, releasing energy in the
form of gamma rays, neutrinos, and positrons.

The overall process can be written as

4p — ‘He+2e" +2v. 4+~ . 4 /1_
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12.2 Wave-Particle Duality

Louis de Broglie proposed that all matter has wave-like properties. The de Broglie wavelength is given by
h
A= —
p

where

e \is the de Broglie wavelength,
o h=6.626 x 107**J s is Planck’s constant, and

e p is the particle’s momentum.

12.3 Planck’s Equation

For electromagnetic waves of frequency v, the energy of photon is given by

E = hv

12.4 Bohr Model of the Hydrogen Atom

12.4.1 Bohr Postulates
1. The electron moves in circular orbits around the proton due to Coulomb attraction.
2. Only certain discrete orbits are allowed.
3. The angular momentum of the electron is quantized.

4. Radiation is emitted or absorbed only during transitions between allowed orbits.

12.4.2 Formulas

The electrostatic force between the proton and electron is

1 e? -
- dreg ﬁ N ;;\'\{
e W 7
For circular motion, the centripetal force is L f ‘,’
P S S 1S
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Equating the two,

mv? 1 e
r dwegr?
Solving for velocity,
»_ 1 &
dmeg mr

Bohr postulated

L=mvr=nh n=1,2,3,...

Solving for velocity,

nh
v=—
mr
Substitute the expression for v:
2 2
nh\~ 1 e
mr ) dwegmr
Solving for r,
Ty =
me?
Define the Bohr radius
47T€07L2
ag = D)
me
Hence,
T = agn®
The total energy is
o, 1 e
E=K+U=_-mv— —
dmeg T
Note that
11 e
- 24weg 1
Hence, the total energy becomes
1 1 €2
= _— -
24meg 1

Substituting 7,

Page 166 /




12 QUANTUM MECHANICS By Pika and Owen

12.4.3 Wavefunction

In quantum mechanics, the state of a particle is fully described by a complex-valued function called the
wavefunction, denoted by v (z,t). The wavefunction contains all the measurable information about the
system.

The physical interpretation of the wavefunction is given by the Born rule, which states that the probability

density of finding a particle at position z at time ¢ is

P(x,t) = |1D(:L’,t)|2

Since the particle must be found somewhere in space, the total probability of finding the particle over all

space must be equal to one. This requirement leads to the normalisation condition:

JCE R

o0

If a wavefunction does not initially satisfy this condition, it can be normalised by introducing a constant
A such that
U(z,t) = Ag(x, 1)

where the constant A is chosen to ensure the normalisation condition is satisfied.

12.4.4 Time-Independent Schrodinger Equation

The Schrodinger equation is
h2
— VR +V(r)y = By
2m

with the Coulomb potential

Using separation of variables,

the radial equation becomes

2 2 2 2
’R dR {m<E+ e

dar? ' rdr i dmegr
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For large r, the Coulomb term becomes negligible, yielding

d’R

2p _
W —k‘R=0
where
2mE
K =1]— 72
The physically acceptable solution is
R(r) ~ e
For small r, the equation has solution
R(r) ~ 71t

Motivated by the asymptotic behavior, write
R(r) = r*e " F(r)

Define a dimensionless variable

p = 2KT

and substitute into the radial equation to obtain

d*F dF me?
— 4+ 2U+2-p)—+|—5—(—-1)F=0
P dp? ( 2 dp <27r507'z2/€ )
Assume a power series
F(p) = axp*
k=0
Substitution yields the recursion relation
m€2
k + t + L- 2reoh’k
(93

G = e D)k + 20+ 2)

For the wavefunction to remain normalizable, the series must terminate. Hence, there exists an integer n,
AV

such that
2
me
—— =n,+{+1
2meoh’k
Define the principal quantum number
n=n,+¢+1
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Solving for energy,

12.5 Rydberg Formula

The wavelength A of the emitted or absorbed light in a hydrogen atom is given by

1 1 1
2= (e o)

where
e )\ is the wavelength of the light,
e R is the Rydberg constant for hydrogen, approximately R = 1.097 x 10" m™!, and
« ny and ng are positive integers, with ny > n;.
Proof. According to the Bohr model, the energy levels of a hydrogen atom are quantized and given by

_13.6 eV

n2

E, =

When an electron transitions from a higher energy level ny to a lower energy level ny, the energy difference

AF is given by
13.6 eV 13.6 eV
S RART o

2 2
ny n,

AE = E,, — E,, =

The energy of the emitted photon when the electron undergoes a transition is
Ephoton = AE = hv

The frequency v of the emitted photon is related to the wavelength A by

By combining the expressions for Eppoton and AE, we obtain the Rydberg formula
L, (1.1 Uiy W
AT\
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12.6 Uncertainty Principle

Werner Heisenberg showed that certain pairs of physical quantities cannot be simultaneously measured

with arbitrary precision. The most famous uncertainty relation is between position and momentum:

Ax Ap >

DO| St

where
o Az is the uncertainty in position
o Ap is the uncertainty in momentum
e h= 7 is the reduced Planck constant

T
Example. Consider a particle (e.g., an electron) passing through a narrow slit of width a along the
x-direction. Due to the confinement in position, the particle’s wavefunction is localized within the slit,
giving

Az ~a

After passing through the slit, the particle undergoes diffraction, resulting in a spread in its momentum

in the z-direction. The diffraction pattern for a slit is given by the first minimum condition:
asing ~ \

where 6 is the diffraction angle and A is the wavelength of the particle. For a particle with momentum p,

its wavelength is related to the momentum by de Broglie’s relation:
h
A= —
p
where h is Planck’s constant. The transverse momentum uncertainty is approximately

h
Ap, ~ psinf ~ —
a

C A
Multiplying the uncertainties in position and momentum: ._'j B 1
e "-::‘,-' % y ) P B -
B Bpe o S te |\
a 1 _!_- f Jr— \ < N
Page 170 / (o '1 1 «J},A



12 QUANTUM MECHANICS By Pika and Owen

which reproduces the Heisenberg Uncertainty Principle approximately.

Another important uncertainty relation is between energy and time:

AFE At >

N | St

The uncertainty principle isn’t about measurement limitations, but about fundamental properties of quan-

tum systems. Particles don’t have precisely defined positions and momenta simultaneously.
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13 Stellar Astrophysics

13.1 Stellar Classifications
Stars can be classified by their internal structure:

o Main Sequence Stars: Hydrogen-burning core, radiative or convective energy transport. Governed

by mass-luminosity relation:

( 4.0

M

(M@) for M > 10M,

L M 3.5

 ~ — for 0.5 < M < 10M@
Mg

M\ 23
— for M < 0.5M,
\ (MG) ©

o Giant Stars: Expanded envelope, hydrogen shell burning around inert helium core.

« Supergiants: Massive stars with complex layered burning (H, He, C, O, Si shells).

o« White Dwarfs: Electron-degenerate cores, supported by electron degeneracy pressure.
« Neutron Stars: Neutron-degenerate matter, extreme density (~ 10'7 kg/m?).

o Black Holes: Gravitational collapse beyond neutron degeneracy pressure support.

Stars can also be classified by their composition:

Population | Metallicity [Fe/H] | Characteristics

Population I > —0.5 Metal-rich, disk stars, young
Population IT | —1.0 to —0.5 Metal-poor, halo stars, old
Population IIT | < —1.0 Zero metals, first generation

Table 6: Stellar Populations

Metallicity affects stellar evolution:
o Opacity changes with metal content : .-;-:.’._ L T
™

o Lower metallicity stars are hotter and bluer at given mass — (),
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o Metallicity influences mass loss rates
Stars can also be classified by their activity:

o Flare Stars (UV Ceti type): M-dwarfs with magnetic reconnection events: Magnetic reconnection
is a fundamental plasma physics process where the topology of magnetic field lines is rearranged,

converting magnetic energy into kinetic energy, thermal energy, and particle acceleration.
» Rotational Classes:

— Slow rotators: veq < 10 km/s (Sun: 2 km/s)

— Fast rotators: veq > 50 km/s (young stars)

o Magnetic Activity:

where Lpg is the luminosity in the Calcium II H & K lines and L, is the bolometric luminosity:
Total power output across all wavelengths (from radio to X-rays). This ratio tells what fraction of
the star’s total energy output is being emitted specifically from its magnetically heated chromosphere

via these Calcium lines as Calcium II is singly-ionized calcium.

13.2 HR Diagram

13.2.1 Introduction

The Hertzsprung-Russell diagram (HR diagram) is one of the most important tools in astrophysics, inde-
pendently developed by Ejnar Hertzsprung (1905-1911) and Henry Norris Russell (1913). It revolutionized

our understanding of stellar evolution by revealing patterns in stellar properties.
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106 _
105 _
104 _
103 _
102 _

101 |

1

Luminosity [L)]

107

1072
1073

10—4,

White Dwarfs

Supergiants

Main Sequence

® Sun Giants

Instability Strip

107°
47000

13.2.2 Spectral Types and Te

Each spectral type corresponds to

|
|
G
6000

Spectral class and temperature [K]

mperature

a particular range of temperatures and characteristics. The order from

hottest to coolest stars is as follows:
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Spectral Type | Temp (K) Color Mass (M) | Examples

O 30,000-50,000 | Blue 15-90 ¢ Puppis

B 10,000-30,000 | Blue-white 2-15 Rigel, Spica

A 7,500-10,000 | White 1.4-2 Sirius, Vega

F 6,000-7,500 Yellow-white | 1.04-1.4 Procyon

G 5,200-6,000 Yellow 0.8-1.04 Sun, o Cen A

K 3,700-5,200 Orange 0.45-0.8 Arcturus, Aldebaran

M 2,400-3,700 Red 0.08-0.45 Betelgeuse, Proxima Cen

Table 7: MK Spectral Classification System

The sequence "0, B, A, F, G, K, M” can be difficult to remember due to the variety of letters. To aid
in memorization, astronomers and students often use mnemonics. A common mnemonic for remembering

the spectral types in order is
“Oh Be A Fine Girl/Guy, Kiss Me!”

This mnemonic associates each letter with a word:

« O-0h
« B-Be
e« A-A
o F - Fine

o G - Girl/Guy
« K - Kiss
e M- Me
In addition to spectral types, stars are also classified based on their luminosity,fwhich 1&r;1atédto their

- Ay . - I
size and brightness. This is done using Roman numerals from I to V: Y S 1

o I Supergiants (e.g., Betelgeuse) — \ ——



13 STELLAR ASTROPHYSICS By Pika and Owen

II: Bright giants

III: Giants (e.g., Alpha Centauri)
o IV: Subgiants
« V: Main sequence stars (e.g., the Sun)

The full classification of a star would be a combination of both spectral type and luminosity class. For
example, our Sun is classified as a G2V star, meaning it is a G-type main sequence star. 2 is a subclass
number that further refines the classification. The scale goes from 0 to 9, with 0 being the hottest and 9
being the coolest in each spectral type. The number 2 indicates that the star is towards the middle of the
G-type range. In this case, a G2 star has a temperature closer to 5,800 K.

13.2.3 Turn-Off Point

The turn-off point is an important feature in the HR diagram that helps astronomers determine the age
of a star cluster. It represents the point where stars, after exhausting the hydrogen in their cores, begin
to leave the main sequence and evolve into red giants. The position of the turn-off point on the diagram
depends on the mass of the stars in the cluster.
Note that

M 1

M
Age of Cluster = A x 35 M5

where we use the mass of the star at the turn-off point M.

13.3 Stellar Evolution

13.3.1 Stellar Formation

Stars form from giant clouds of gas and dust called molecular clouds or nebulae. The process includes:
« Gravitational Collapse: Regions with higher density collapse under gravity.

o Protostar Formation: As the cloud collapses, a dense core forms and heats up due to grayitational

energy.
- .f.':? i:‘ i f—-.
« Accretion: Surrounding material falls onto the protostar, increasing its'mass _gxndierﬁpefaﬁ*e.
e -
= r *n' ._/f
‘A ¥ <
| o
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13.3.2 Pre-Main Sequence Stars

Before reaching the main sequence, stars go through the pre-main sequence (PMS) phase:

o The protostar contracts and heats up.
o Energy is produced mainly by gravitational contraction, not nuclear fusion.

o PMS stars follow Hayashi tracks (for lower-mass stars) or Henyey tracks (for higher-mass stars)

on the Hertzsprung-Russell diagram.

13.3.3 Main Sequence Stars
A star enters the main sequence when hydrogen fusion begins in its core.

» Core hydrogen fusion converts hydrogen into helium via the proton-proton chain (low-mass stars)

or CNO cycle (high-mass stars).

— Proton-Proton Chain:
4'H — “He + 2™ + 21, + 26.7MeV

— CNO Cycle:

2 — 'H — %He + energy

o The star achieves hydrostatic equilibrium: gravity balanced by radiation pressure from fusion.

o The main sequence lifetime depends on stellar mass; higher-mass stars burn faster and live shorter

lives.

13.3.4 Post-Main Sequence Stars

After hydrogen in the core is exhausted, stars evolve differently depending on their mass.

Low to Intermediate-Mass Stars (< 8M;)

« Expand into Red Giants.

« Helium fusion begins in the core (triple-alpha process): L - %
_ :_. *n' . ~
3%He — C+ v w o\ OD
s o N
ERS
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« May go through asymptotic giant branch (AGB) phase before shedding outer layers.

High-Mass Stars (> 8M,)
« Expand into supergiants.
« Fuse heavier elements in successive shells (C, O, Si, etc.).

e Form an iron core, which cannot undergo fusion to produce energy.

13.3.5 Supernovae

» Massive stars end their lives in a core-collapse supernova (Type II).
o The core collapses, and outer layers are expelled violently.

o Supernovae enrich the interstellar medium with heavy elements.

13.3.6 Planetary Nebulae

o Formed by low to intermediate-mass stars shedding their outer layers.
e The exposed core emits ultraviolet radiation, ionizing the ejected gas.

o Eventually fades to leave a white dwarf.

13.3.7 End States of Stars

o« White Dwarfs: Remnants of low/intermediate-mass stars. Supported by electron degeneracy

pressure.

o Neutron Stars: Remnants of core-collapse supernovae of stars with 8 — 20M,. Supported by

neutron degeneracy pressure.

« Black Holes: Remnants of very massive stars (> 20M). Gravity overwhelms all forms of degen-

eracy pressure.

Pl
N g ol
i b 'c,
i y -
-~ F - .
’ e
= = *n' rd
e A >— NS
Sur , _',/.&—'_*\\ L
' !
\'(1 :/ 4 §>
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13.4 Magnitude System

Definition. 13.1: Luminosity

Luminosity is the total amount of energy emitted by a source per unit time.

Definition. 13.2: Luminance

Luminance is the amount of visible light emitted or reflected in a given direction per unit

area per unit solid angle. It describes how bright a surface appears to the human eye.

Property Luminosity Luminance

Physical meaning | Total power emitted | Brightness per area per direction

Depends on distance No No (but depends on direction)
Depends on area Indirectly Directly
ST unit Watt (W) cd/m?
Usually used in Astrophysics Optics

Definition. 13.3: Flux

The flux (F or @) is the total energy received from an astronomical object per unit time per unit
area. It represents the power (energy per unit time) crossing a unit area oriented perpendicular to
the direction of propagation.

For a source emitting total luminosity L isotropically, the flux measured at distance r is

Definition. 13.4: Solid Angle

The solid angle measures the three-dimensional angular size of an object as seen from a point. It

is defined as

=4

r2

where

e dA is an area element on a sphere of radius r,

o df) is the corresponding solid angle.

Page 179 /



13 STELLAR ASTROPHYSICS By Pika and Owen

Definition. 13.5: Intensity

The flux per unit solid angle is called intensity:

Te=a
a0

Definition. 13.6: Spectral Flux Density

The spectral flux density (F\ or F,) is the flux per unit wavelength or frequency interval. It
describes how the flux is distributed across the electromagnetic spectrum.

The solar constant is the flux received from the Sun at Earth’s distance:
Fo, =1361 Wm 2 =1.361 x 10° erg s *cm ™2

This represents the total solar power (all wavelengths) incident on 1 m? at 1 AU.

Definition. 13.7: Apparent Magnitude

It refers to the brightness of an object as observed from Earth, given by

F
m = —2.5logy, <F>
0

where Fj is the reference flux for zero magnitude. The zero-point Fj is calibrated using standard
stars. Originally, Vega (o Lyrae) was defined to have magnitude 0.0 in all filters. Modern systems

use more precisely defined spectrophotometric standards.

Ancient astronomers (especially Hipparchus, 150 BCE) ranked stars by eye:
1. 1st magnitude means the brightest (e.g. Sirius and Vega)
2. 6th magnitude means faintest visible to the naked eye

Much later (1856), Norman Pogson put this on a mathematical footing. He defined the scale so that a

difference of 5 magnitudes corresponds to a brightness ratio of 100.

2
—1:100whenm2—m1:5
Fy
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Assume magnitude difference is proportional to the logarithm of the flux ratio:

F
my —my = klogy, (Fl)
2

By Pogson’s condition, 5 = 2k = k = 2.5. Take star 1 as the reference star: m; = 0,F, = Fj
F

gives m = —2.5log,, (F) Later, the logarithmic scale was found to match the Weber-Fechner law in
0

psychophysics, which states that perceived sensation is proportional to the logarithm of stimulus intensity.

Definition. 13.8: Absolute Magnitude

The brightness an object would have if placed at a standard distance of 10 parsecs (32.6 light-years):

d
M=m— 510g10 (m)

where d is the distance to the object in parsecs.

Definition. 13.9: Distance Modulus

The difference between apparent and absolute magnitude relates directly to distance:

pw=m—M =5log;yd—5

Definition. 13.10: Limiting Magnitude

The limiting magnitude is the faintest apparent magnitude of a celestial object that can be detected
with a given instrument under specific observing conditions. It represents the threshold between

what is observable and what is not. It is given by

D 951 Transmission
.blo _—
- 810 0.95

Miim = Meye + 510g (

where
1. Meye is the naked-eye limiting magnitude (typically 6.0 under ideal conditions),
2. D is the telescope aperture,

3. deye is the dark-adapted pupil diameter (typically 7 mm), and

4. Transmission is the optical transmission coefficient. j
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Definition. 13.11: Bolometric Magnitude

The bolometric magnitude (my,, or M) is a measure of an astronomical object’s total electro-
magnetic luminosity across all wavelengths, from gamma rays to radio waves. Unlike filter-specific
magnitudes, it accounts for all emitted radiation.

The bolometric magnitude is defined through the bolometric flux Fi;, which is the integral of the

spectral flux density over all wavelengths:

Fbolz/ F)\d>\:/ Fl,dl/
0 0

The apparent bolometric magnitude is then

Fpo

where Fyo0 is the reference bolometric flux for zero magnitude.

Definition. 13.12: Bolometric Correction

It refers to the difference between bolometric and visual magnitudes:

BC = Mypq — My

or for apparent magnitudes:

BC = Mpol — My

. J

The Sun’ s magnitude is assumed to be bolometric by convention. Therefore, it is common to use

L
©

Example. (2013 IOAA) A star has visual apparent magnitude my = 12.2 mag, parallax = = 0.001”

and effective temperature T, = 4000 K. Its bolometric correction is B.C. = —0.6 mag.
(a) Find its luminosity as a function of the solar luminosity.
(b) What type of star is it?

(i) a red giant

(ii) a blue giant
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(iii) a red dwarf

Please write (i), (ii) or (iii) in your answer sheet.

(a) First, the absolute visual magnitude is obtained from
My —my =5—>5logr

or equivalently,

My —my =5+ 5logm

Thus,
My =12.2+ 5+ 5log(0.001) = 12.2 + 5 — 15 = 2.2 mag

The bolometric correction is defined as
B.C. = Myq — My,

SO

Mo = B.C. + My = —0.6 + 2.2 = 1.6 mag

The luminosity is calculated using

L
M@ — Mbol = 2510g (L—)
©

where Mg = 4.72 mag. Hence,

4.72 = 1.6 = 2.5log <£)
Lo

L
log [ — ) =12
(i)

L=17.7L,

and therefore

(b) A star with My, = 1.6 mag, luminosity L = 17.7 L, and effective temperature

much brighter and cooler than the Sun. Therefore, it is (i) a red giant‘star.
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13.5 Albedo

Albedo is a dimensionless physical quantity that measures the reflectivity of a surface. It is defined as
the fraction of incident electromagnetic radiation (usually sunlight) that is reflected by a surface.

If a surface receives an incident radiant power P, and reflects a power P, its albedo « is defined as

0<a<l1

Assuming the planet radiates as a black body and is in thermal equilibrium, the absorbed power equals

emitted power:

(1 —a)7R*S = 47 R*cT*

where o is the Stefan—Boltzmann constant.

Solving for the equilibrium temperature 7"

13.6 Geometric Albedo

The geometric albedo is a dimensionless quantity that measures how bright an astronomical body
appears when observed at full phase (i.e. zero phase angle), compared to an idealized reference surface.

Let

» « be the phase angle, defined as the angle between the incident radiation from the source (e.g. the

Sun) and the direction to the observer, as seen from the object,
e «a =0 correspond to full illumination (observer directly behind the light source).
We introduce a reference surface:

A perfectly diffusing (Lambertian) flat disk with the same cross-sectional area as the object,

illuminated and observed at normal incidence.

A Lambertian surface reflects radiation isotropically, obeying Lambert’ s cosine law: g
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Theorem. 13.1: Lambert’ s Cosine law

A surface obeys Lambert’s cosine law if its radiance is independent of direction:

1(0, ) = Iy = constant

For a Lambertian surface, the power emitted into solid angle df2 is

dP = Iycos O dA dQ)

If the incident solar flux is Fj,., a perfectly reflecting disk intercepts power P = Fj,.A. Integrating the

Lambertian emission over a hemisphere:

2r /2
Pretiectea = / / LiepcosOsin0Adody = mAlcs
o Jo

Equating incident and reflected power (Prcfiected = FincA), we find:

F, inc
m

Iref =

The geometric albedo p is defined as

Iobject(a - 0) o 7"-]object(a - 0)

I ref Enc

The total energy reflected in all directions is characterized by the Bond Albedo (Apg), related to p by
the phase integral ¢:

Ag=1p-q, q:2/ & (a) sin ada
0

where ®(«) is the phase function, which is the relative brightness of the object as a function of the phase

angle, normalized such that ®(0) = 1.

13.7 Color Indices
9

Color indices quantify the color of astronomical objects by measuring the difference in magnit
two different wavelength bands:

C:m)\l —m>\2

where m,, and m,, are apparent magnitudes measured through different filters.

Page 185 /



13 STELLAR ASTROPHYSICS

By Pika and Owen

Typical Use

Filter | Center (\.,, nm) | FWHM (nm)
U 365 66
B 445 94
\Y 551 88
R 658 138
I 806 149

Ultraviolet continuum
Blue light, Balmer break
Visual (photopic)

Red continuum

Near-infrared

Table 8: Johnson-Cousins photometric system filters

The followings are the common color indices to use:

U-B=
B-V =
V-R=

my —mp
mp —my
my — Mp

V—[:mv—m[

The observed color index is affected by interstellar extinction:

(B_V)obs = (B_ V)0+E(B_V)

where E(B — V) is the color excess:

E(B—V)=Ap— Ay

where Ap is the extinction in B-band in mag and Ay is the extinction in V-band in mag.

13.8 Atmospheric Extinction

Atmospheric extinction reduces the observed flux:

/
M) obs = TN true + k)\ - X

where

o k) is the extinction coefficient (mag/airmass) and
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o X is the airmass (dimensionless) which quantifies the atmosphere’s thickness along a light’s path.

For a plane-parallel atmosphere,

X =secz

where z is the zenith distance (z = 90° — altitude).

13.9 Optical Depth

Optical depth 7, describes attenuation by comparing the initial intensity [,,(0) and the transmitted inten-

sity 1,,(s): ;
0= ()

Extinction in magnitudes A, is related to optical depth by

Ay = 2.5logyy(eTy) = 1.086 7,

as

—e ™ = 1070.4A>\

13.10 Binary Star

Binary star systems consist of two stars orbiting around their common center of mass.

13.10.1 Different Types of Binary Stars

Visual Binaries They refer to the stars that can be resolved individually through telescopes. Their

orbits can be directly observed over time.

Spectroscopic Binaries They refer to the stars that can be detected through periodic Doppler shifts

in their spectral lines. They can be further identified as
« Single-lined spectroscopic binaries (SB1): Only one set of spectral lines is visible

« Double-lined spectroscopic binaries (SB2): Both sets of spectral lines are Vls1b15f —
/1"’ -

i k
Eclipsing Binaries They are the systems where the orbital plane is nearly edge-on to QU lme 0! ﬁ&t .'
t"
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Astrometric Binaries They can be detected through the wobble of one star’s proper motion due to an

unseen Companion.

Interacting Binaries
e Mass transfer occurs when one star fills its Roche lobe.

o Examples: Cataclysmic variables, X-ray binaries.

Peculiar Binary Systems
o Systems with unusual properties such as extremely short orbital periods or highly eccentric orbits.

o Examples: Contact binaries, Algol-type binaries.

13.10.2 Modified Kepler’s Third Law

For a binary system, Kepler’s third law relates the orbital period P, semi-major axis a, and total mass M:

A1%a?
p:—__—— " 28
G(M; + M,) (28)

where
e P is the orbital period,
e a is the semi-major axis of the relative orbit, and

e My, M, are the masses of the two stars

13.10.3 Mass Function

For spectroscopic binaries, we measure the mass function. For single-lined spectroscopic binaries,

M3 sin® i P
M) = 2 _ 3
f< ) (M1 + M2)2 27TGU1’T

For double-lined spectroscopic binaries, we can determine the mass ratio: i
M1 o Vo.r
M, U1,
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Proof. We begin with Kepler’s third law for two bodies orbiting their common center of mass:

4Am2a3

pP=_
G(M; + Ms)

where a = a; + as is the total separation between the stars, and a;, as are their distances from the center
of mass.

The center of mass condition gives

CLlMl = a2M2
From this, we can write the mass ratio:
ay My
e 29
v (29)
Also, the total separation can be expressed in terms of a;:
a=a; + ag (30)
M
=a; + alﬁl (from Equation @) (31)
2
My + M,
_ 32
ai ( M, ) ( )

For the visible star (star 1), we measure its radial velocity amplitude v ,. The true orbital speed vy is

related to the observed radial velocity by the inclination:

V1, = v sini (33)

For a circular orbit (e = 0), the orbital speed is constant and given by

2ma
n="5 ! (34)
Combining Equations @ and @:
2may sin g
o, = i &
From Equation @7 we can solve for aq:
Pvl,r
a; = T
27 sin
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Now substitute Equation @ into Kepler’s law (Equation ):

42 M, + My\1?
2 1 2

= G (M + My) {al < M, )} (36)
- 47'('2@:% (Ml —+ M2)3 (37)
— G(M; + My) M3

4203 (M, + M,y)2
— G 1 . ( 1M3 2) (38)
2

Now substitute a; from Equation into Equation @:

p2_ 4r® (My + My)* ( Pvy, )3
G M3 2msing
_dm? (My+ My)? Pt
G M} 8msin’i
o P3,Uir (My + My)?
T 2nGsindi M3

Cancel P? from both sides (multiply both sides by 1/P?):

1— PU?,T ) (M, +M2)2
2mG sin® i M3

Now rearrange to isolate the mass terms on the left:

Mjsin®s P o
(M1 +M2)2 N 21G Lr

13.10.4 Light Curves

Eclipsing binaries exhibit characteristic light curves with periodic dips in brightness:

2
[}

g 1

=

.ob

—

M

T

X 09} :
=

=

—

o

Z,

0'80 05 1 15 2 25 3 35 4
Time (days)
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1. Let I} and F5 be the flux of the two stars. The total observed flux when both stars are visible is

Ftota1:F1+F2

2. The primary eclipse occurs when the brighter star is partially or fully blocked by the dimmer star,
causing a significant dip. Let the obscured fraction of the primary star be fi(t), then the observed

flux is

Fprimary(t) = Fl [1 - fl(t)] + FQ

3. The secondary eclipse occurs when the dimmer star is blocked, causing a smaller dip. The fainter

star is obscured by the brighter star. Let fo(¢) be the obscured fraction of the secondary star, then:

Fsecondary(t) = Fl + F2 [1 - f?(t)]

4. If the eclipse is total, the flux reduces exactly by the luminosity of the obscured star.
In this plot,
o The first deep dip at t = 1 day corresponds to the primary eclipse.

e The smaller dip at ¢t = 3 days corresponds to the secondary eclipse.

13.10.5 Radial Velocity Curves

A binary star system consists of two stars orbiting their common center of mass. If the orbital plane is
inclined relative to the line of sight, the stars will alternately move toward and away from the observer.

This motion causes a periodic Doppler shift in the spectral lines:

¢ Motion toward the observer will result in blueshift

o Motion away from the observer will result in redshift

The line-of-sight component of the orbital velocity is called the radial velocity. A radial velocity curve

is a plot of radial velocity v, versus time ¢ (or orbital phase). It provides direct information about the

orbital properties of the binary system. , f -
For a binary star in a circular orbit, the radial velocity varies sinusoidally: Y. f i\ \{ ) 1
v.(t) = K sin (% + qb) _' "’f & \\ —
' N \,__;1{?‘#_*\&5_2;» <>
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where
o K is the radial velocity amplitude
o P is the orbital period

e ¢ is the phase constant

v’f‘
A

T oY R— R

Time / Orbital Phase

SRy o S

o The curves are sinusoidal for circular orbits.
o The two stars have opposite phases due to conservation of momentum.
o The more massive star has a smaller velocity amplitude.

o The period of the curve equals the orbital period.

For a binary star in an elliptical orbit, the radial velocity of one component is given by:

ve(t) = v+ K [cos(0(t) + w) + e cosw]

where
o 7 is the systemic (center-of-mass) velocity

o K is the radial velocity semi-amplitude

e is the orbital eccentricity
e w is the argument of periastron

o 6(t) is the true anomaly
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The semi-amplitude K is
2masing

K= O
Py1—e?

where
e a is the semi-major axis of the star’s orbit about the barycenter
e ¢ is the inclination angle
o P is the orbital period

The following shows an example of the radial velocity curve:

v, (arb. units)
A

VUmax e = 075, W = 900

¢»=1
> Orbital Phase

eriastron Apastron

Umin

13.10.6 Roche Lobe

In a close binary star system, the gravitational field experienced by a test particle is determined by the
combined gravity of both stars and the centrifugal effect in the rotating frame. The Roche lobe of a star
is defined as the region around that star within which material is gravitationally bound to it. If a star
fills or overflows its Roche lobe, mass transfer to its companion can occur, a key mechanism in interacting

binaries such as X-ray binaries, cataclysmic variables, and some exoplanetary systems.
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Figure 9: Source: https://root-nation.com/ua/news-ua/it-news-ua/ua-blackhole-warped-accretion-disc/

13.11 Exoplanet

13.11.1 Introduction

An exoplanet (or extrasolar planet) is a planet that orbits a star outside our Solar System. The term

comes from the Greek "exo” (outside) and “planetes” (wanderer).

13.11.2 Classes of Exoplanets
« Hot Jupiters: Gas giants very close to their stars.
o Super-Earths: Planets with masses larger than Earth but smaller than Neptune.
o Terrestrial planets: Rocky planets similar to Earth or Mars.

o Ice giants: Analogous to Uranus and Neptune.

13.11.3 Spectral Signatures of Possible Life

o Detection of biosignature gases like Oq, O3, CH,4, and water vapor in exoplanét'étm@sphérgé! ’

o Observed via transmission spectroscopy during planetary transits. o N\
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13.11.4 Radial Velocity Method

It is also known as the Doppler method. This technique measures the star’s wobble caused by an orbiting

planet’s gravitational pull.

A % P 1/3 my, Sin ¢ 1
’U =
27TG mg/S 1— 62

where
o Awv represents the velocity semi-amplitude,
e K is a constant,
e P represents the orbital period,
« m, represents the planet mass,
e m, represents the star mass,
o 1 represents the orbital inclination, and

» e represents the orbital eccentricity.

13.11.5 Transit Method

It measures the periodic dimming of a star as a planet passes in front of it.

RA\2
AF = (-2
(%)
where AF is the fractional flux decrease, R, is planet radius, and Rj is star radius.

13.11.6 Habitable Zone

A habitable zone refers to the region around a star where liquid water could exist on a planet’s surface.
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14 Cosmology

14.1 Structure of the Universe

14.1.1 Star Clusters

Introduction Star clusters are groups of stars that are gravitationally bound and formed from the
same molecular cloud. They provide important insights into stellar evolution and galactic structure. Star

clusters are broadly classified into two types:

« Open Clusters (Galactic Clusters): These contain a few tens to a few thousand stars. They are
loosely bound and typically found in the Galactic disk. Open clusters are relatively young (a few

million to a few hundred million years) and often contain hot, massive stars.

o Globular Clusters: These are densely packed spherical collections of tens of thousands to millions
of stars. They orbit the Galactic halo and are typically very old (10-13 billion years). Globular

clusters are rich in low-mass stars and show little gas or dust.

Structurally, a star cluster has a core (densest region), a halo (more diffuse stars), and in some cases a

tidal radius where stars may escape due to Galactic gravitational forces.

Luminosity The luminosity L of a star cluster can be calculated by summing the luminosities of all the

stars in the cluster:
cluster § Lstars

Where Lgiars is the luminosity of each star in the cluster.

14.1.2 Galaxies

Introduction Galaxies are vast systems of stars, gas, dust, and dark matter, bound together by gravity.
They are the fundamental building blocks of the Universe. Galaxies can be classified based on their
structure, composition, and activity:

« Elliptical galaxies: Smooth, featureless light distribution, dominated by older starg,dittle gas or

.

dust. -

, " y 7
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« Barred spiral galaxies: Spiral galaxies with a central bar-shaped structure of stars.
o Irregular galaxies: No definite shape, often rich in gas and dust.

« Active galaxies: Galaxies with energetic cores (AGN), often emitting strong radiation due to

accretion onto supermassive black holes.
Our galaxy is a barred spiral galaxy with several distinct components:
o Bulge: Central region, high star density, mostly old stars.
o Disk: Contains spiral arms, gas, dust, and young stars.

o Halo: Spherical region with globular clusters and dark matter.

2 ANATOMY OF THE MILKY WAY

—— Globular clusters

\Stellar halo

www.esa.int European Space Agency

Figure 10: From https://sci.esa.int/web/gaia/-/58206-anatomy-of-the-milky-way

Milky Way The Milky Way is a barred spiral galaxy containing several hundred billion stars, along with
interstellar gas, dust, and a dominant dark matter halo. Its stellar disk has a diameter of approximately
30 kpc, while the dark matter halo is believed to extend to radii of order 200 kpc or more. The Milky Way

is structured into several main components:

e a thin and thick stellar disk,

a central bulge and bar,

« a stellar halo, N = : ’

an extended dark matter halo. - > A o
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The Galaxy is not an isolated system. It is surrounded by a population of smaller galaxies gravitationally
bound to it, known as satellite galaxies, like the Large and Small Magellanic Clouds, and several ultra-
faint dwarf galaxies.

Satellite galaxies are typically low-mass systems orbiting the Milky Way within its dark matter halo. They
are remnants of the hierarchical assembly process predicted by the ACDM cosmological model, in which
large galaxies grow through the accretion and merger of smaller ones. Dozens of Milky Way satellites are

currently known, and ongoing deep surveys continue to discover new, extremely faint systems.

Galactic Geometry and Coordinates We model the Milky Way as a rotating disk with the Galactic
Center (GC) at the origin. Let R be the Galactocentric distance of an object, Ry be the Galactocentric
distance of the Sun, ©(R) be the circular rotation speed at radius R, ©y = O(Ry) be the circular speed of
the Sun, [ be the Galactic longitude of the object, and b be the Galactic latitude.

Throughout this section we assume b = 0 (objects in the Galactic plane), so cosb = 1. The extension to
nonzero b is obtained by multiplying the final radial velocity by cos b.

Assume both the Sun and the object move on circular orbits around the Galactic Center. From Galactic

geometry, the radial velocity of an object at longitude [ is

v = [@(R)% - @0} sin

For an object at heliocentric distance d, the Galactocentric radius R is
R? = R} + d* — 2Rod cos

For longitudes 0° < [ < 90° or 270° < [ < 360°, the line of sight intersects regions with R < Ry. In this

case:

o The radial velocity varies monotonically along the line of sight.

e A maximum (or minimum) radial velocity occurs at the tangent point.

At the tangent point,

R = Rysinl
and the radial velocity becomes > ;""’.f-/"é';_-\f '.
Urmax = [O(Rosinl) — Ogsinl] Ff 1' f ,/ ,,,
For longitudes 90° < [ < 270°, all points along the line of sight satisfy R > Ry. In ﬂrié'region,»---:::'—l A \
= .") /“F’_\ —;,s
A \ @
o
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e There is no tangent point.
» Radial velocity depends on both distance d and the rotation curve.

The general formula

v = [@(R)% - @0} sin

still applies, but v, alone is insufficient to uniquely determine R.

14.2 Large-scale Structure

The large-scale structure (LSS) of the Universe refers to the distribution of matter on scales larger than
individual galaxies (typically 2 1 Mpc). On these scales, matter is not distributed uniformly, but forms a

complex network known as the cosmic web:
« Galaxy clusters: Dense, gravitationally bound systems of hundreds to thousands of galaxies.
o Galaxy groups: Smaller associations of galaxies, often containing a few to tens of members.

o Filaments: Elongated structures connecting clusters and groups, containing galaxies and dark

matter.
o Voids: Large, underdense regions with very few galaxies.
« Walls / Sheets: Flattened structures of galaxies separating voids.

Large-scale structure formed from tiny density fluctuations in the early Universe:

Quantum fluctuations were stretched during cosmic inflation.

e Overdensities grew via gravitational instability.

o Dark matter collapsed first, forming gravitational potential wells.
« Baryonic matter later fell into these wells, forming galaxies.

On sufficiently large scales (2 100 Mpc), the Universe is approximately homogeneous and iSotropic, con-

sistent with the cosmological principle. I
y il -
e , r ?.\ I
R ¥ rd }
= i _')/r.&—'—* . L
\h// ) {’§>
| -~
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14.3 Cosmological Principle

The cosmological principle states that on sufficiently large scales (= 100 Mpc), the universe is
« Homogeneous: Matter and energy are uniformly distributed

» Isotropic: No preferred direction in space

14.4 Rotational Curve

In a galaxy, the stars or gas clouds orbit the galactic center due to the gravitational pull of the mass
contained within the galaxy. According to Newtonian mechanics, the orbital velocity of an object at a

given distance r from the center of a galaxy should behave as

where
» v(r) is the orbital velocity at a distance r from the center and
o Men(r) is the enclosed mass within radius r.

The mass enclosed M,.(r) depends on the distribution of both visible matter (such as stars and gas) and
dark matter within the galaxy.
For a galaxy dominated by visible matter (stars, gas, etc.), the enclosed mass increases with radius, but

at larger distances from the center, the mass distribution becomes less dense. Then

v(r) x —
) -
This is called the Keplerian decline and is observed in the motion of planets in our solar system.
However, observations of galaxies reveal that the rotation curves do not behave this way.
In the 1970s, astronomers like Vera Rubin and Kent Ford observed that the rotation curves of spiral
galaxies remain nearly flat at large distances from the center, far beyond the region where #isible matter

is present. This observation was unexpected, as the rotation velocity should have decreaséd_lf the mass
/ g"' '\ y

additional mass present that is not visible. This mass is what we refer to as dark" matter f ”
44 2 &
o
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The flat rotation curves observed at large radii imply that the mass within the galaxy continues to increase

even in the outer regions. The orbital velocity v(r) remains constant:
v(r) = vga for large r

This indicates that the gravitational influence of dark matter is significant at large distances from the

galactic center, where visible matter is sparse.

14.5 Hubble’s Law
V= H(]d

where v is the recession velocity, d is the proper distance to the galaxy, and Hj is the present-day Hubble
. L. :
constant. One can notice that ty = 7 s the age of the universe.
0
Cosmic expansion is described by the scale factor a(t), which measures how distances in the Universe

change over time. The Hubble parameter is defined using the scale factor:

Light traveling through an expanding Universe also stretches with the expansion. If a photon is emitted at
time tq,, with wavelength A\, and observed today at ty with wavelength \.,s, the cosmological redshift

is defined as

>\obs
1 -
T
The redshift is directly related to the scale factor:
a(to)
1 -
T ltew)

14.6 Cosmological Distance Measures

14.6.1 Proper Distance

The proper distance is related to the scale factor a(t) of the universe, which describes how distances

.
between objects in the universe change with time due to the expansion. For ar}, object af redshift 2, the

oy o Y
g oy 3
s 4 Py "c\_. \ .‘\_.
E LS
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proper distance D), at a given time is related to the comoving distance D, by

where
e D, is the proper distance,
e D, is the comoving distance,

 a(t) is the scale factor at the time of observation.

14.6.2 Comoving Distance

The comoving distance is the distance between two objects as measured in a coordinate system that
accounts for the expansion of the universe. Unlike the proper distance, the comoving distance remains
constant over time for two objects that are at rest relative to each other in the expanding universe.

The comoving distance D, at redshift z is related to the scale factor a(t) by

Z cdy
D. =
/o H(2')

where
o c is the speed of light,
e H(2') is the Hubble parameter as a function of redshift z’, and

e 2 is the redshift at which the object is located.

14.6.3 Luminosity Distance

The luminosity distance is the distance to an object based on its observed brightness and its intrinsic
luminosity. It is often used for objects like supernovae, which have a known intrinsic luminosity.
The luminosity distance Dy, is related to the observed flux fo,s and the intrinsic luminosity L of an object

by the inverse square law: i

L
fobs — m
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From this relation, we can solve for the luminosity distance:

[ L
D, =
t 47 f obs

In a flat universe, the luminosity distance is related to the comoving distance by

Di(z) = (1+2)De(z)

14.6.4 Angular Diameter Distance

The angular diameter distance is related to the physical size r of an object and its angular size 6 (in

radians) by the relation

14.7 Friedmann Equation

Theorem. 14.1: First Friedmann Equation

(@) =T a5

where

« cosmological constant A represents homogeneous energy density inherent to empty space (dark
energy): A = 0 for flat and static universe (Minkowski universe), A > 0 for expanding universe

and A < 0 for contracting universe and

o curvature parameter k = +1 for positive curvature, k = —1 for negative curvature, k = 0 for

zero curvature.

Theorem. 14.2: Second Friedmann Equation

3H?
e When A=0and k=0, p= G which is called the important density.
™

o Density parameter €); := &. Note that ,, + Q, + Qx + Q. = 1. Also, &

c

Page 203 /




14 COSMOLOGY By Pika and Owen

equation and definition,

a — 871G pm ke A
™TU3HE M @2HY e

e From first and second Friedmann equation,

p+3H (p n %) — 0 (Fluid Equation)

o The ACDM model, also known as the Lambda Cold Dark Matter model, is the current standard
model of cosmology. It describes the evolution of the Universe from the early hot and dense state to

its current large-scale structure. The model is based on the following components:

— Cosmological Constant (A): It is responsible for the accelerated expansion of the Universe.
Dark energy has an opposing effect to gravity: instead of attracting matter (like gravity does),
dark energy exerts a repulsive force. This repulsive force is responsible for causing the acceler-

ated expansion of the Universe, pushing galaxies apart at an ever-increasing rate.

— Cold Dark Matter (CDM): It is also referred to as ”cold” because it moves slowly compared
to the speed of light. This is in contrast to "hot” dark matter, which would consist of fast-
moving particles.

Cold dark matter is preferred in cosmological models because it allows for the formation of
small structures (such as galaxies) early in the Universe’s history, which is consistent with

observational data.

Definition. 14.1: Hubble parameter

The Hubble parameter H(t) is defined as the rate of change of the scale factor a(t) and is given by
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14.8 Equation of State

For different cosmic components,
Non-relativistic matter (dust): p=0 = p,oca®
Radiation: p=pc®/3 = p,xa*

Cosmological constant: p= —pc> = px = constant

Proof. Rewriting the fluid equation,

dp a P
L3 (p+5) =0
dt+ a p+02

By chain rule p = d—pa,
a

.dp a P
Lt (p+ ) =0
ada+ a p+02

Assuming a # 0:

By equation of states,

p = wpc?

where w is a constant for each cosmological component.

dp 3
Lica =0
0, P +wp
d d
Lo 34w
p a
P dy @ da
Lo Bw) [ =
Pi p a; a

Choosing a; = 1 for present epoch (p; = po):

3(1+w)

pla) = poa”
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14.9 Big Bang

14.9.1 Singularity

At the very beginning of the universe, all matter and energy were concentrated in a singularity, a point
of infinite density and temperature. This singularity is thought to have contained all the space, time, and

energy that would later expand to form the universe as we know it.

14.9.2 Cosmic Inflation

Cosmic inflation is a theory that explains the rapid expansion of the universe during the first fractions of
a second after the Big Bang. During inflation, the universe expanded exponentially, increasing in size by
a factor of at least 10% in a fraction of a second. This theory helps explain several observed features of

the universe, such as its large-scale homogeneity and isotropy, and the distribution of galaxies.

14.9.3 Expansion of Space

The Big Bang theory proposes that space itself is expanding. This expansion is not into pre-existing
space; rather, it is the stretching of space itself. As space expands, the distances between distant galaxies
increase, leading to the observed redshift of light from those galaxies. This expansion of the universe is

described mathematically by the Friedmann equations.

14.9.4 Phases of the Big Bang

Planck Era (0 to 10~* seconds) The Planck era represents the earliest period of the universe, from
time ¢t = 0 up to approximately 107*3 seconds after the Big Bang. During this time, the universe was
incredibly hot and dense, and the fundamental forces (gravity, electromagnetism, the weak nuclear force,
and the strong nuclear force) were likely unified in a single force. The exact nature of the physics during

this period is unknown, as quantum gravity has yet to be fully understood.

Grand Unification Era (from 10™* to 107*° seconds) During the Grand Unification era, the fun-
damental forces separated. At the highest energies, the strong, weak, and electromagnetic _forces were

unified into a single force. As the universe cooled, these forces separated and the strong forge; responsible

for holding atomic nuclei together, emerged. Fi. a
' =
/ N
i w 7
= = *n' // .
7 =N
= i _')/r.&—'—* . L
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Inflationary Era (from 107%° to 107** seconds) The universe underwent a brief period of exponential
expansion during the inflationary era. During this time, the universe expanded by a factor of at least 10%
in a fraction of a second. This rapid inflation smoothed out the universe and led to the large-scale
homogeneity and isotropy observed today. It also helped set the initial conditions for the formation of the

first particles.

Quark Era (from 107! to 107° seconds) As the universe continued to cool, quarks, electrons, and
other fundamental particles began to form. During the quark era, quarks combined to form protons and
neutrons. The temperature and energy were still high enough for these particles to interact and decay

frequently.

Hadron Era (from 107° seconds to 1 second) At around 107° seconds after the Big Bang, the
temperature dropped enough for quarks to combine into hadrons, such as protons and neutrons. This era

marked the formation of the first stable atomic nuclei.

Lepton Era (from 1 second to 10 seconds) During the lepton era, the universe was dominated by
leptons (such as electrons and neutrinos). These particles were created and annihilated in large quantities.

Neutrinos, which were created in abundance, decoupled from the rest of matter at around 10 seconds.

Photon Era (from 10 seconds to 380,000 years) As the universe continued to cool, photons dom-
inated the universe. At this time, matter and radiation were tightly coupled. The universe was opaque
because free electrons scattered photons, preventing light from traveling freely. However, the universe con-
tinued to expand and cool, and at about 380,000 years after the Big Bang, the universe had cooled enough
for atoms to form and photons to travel freely, leading to the decoupling of matter and radiation. This
event is known as the recombination epoch and is associated with the cosmic microwave background

(CMB) radiation, which we observe today.

Recombination and the Formation of Atoms (380,000 years) During recombination, the universe
cooled enough for protons and electrons to combine and form neutral hydrogen atoms. This allowed
photons to travel freely through space, marking the beginning of the era of decoupling. The release of

these photons is known as the CMB radiation. =
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Dark Ages (380,000 years to 1 billion years) After the formation of atoms, the dnivers&z'éﬁ‘tefé(ﬂhe |
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"dark ages,” a period in which there were no stars or galaxies. During this time, she~universe continued
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to cool and matter began to clump together due to gravitational attraction. However, it was not until the

formation of the first stars and galaxies that the universe became more active.

Reionization (1 billion years to 2 billion years) Reionization occurred when the first stars and
galaxies formed and emitted ultraviolet light that reionized the hydrogen gas. This process ended the dark

ages and allowed the universe to become transparent to ultraviolet light.

The Modern Universe (Present Day) Since the era of reionization, the universe has continued to
expand and evolve. Galaxies, clusters of galaxies, and large-scale structures have formed over billions of

years. The observable universe is currently about 93 billion light-years in diameter.

14.10 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the oldest light in the universe, originating approximately
380,000 years after the Big Bang. It provides a snapshot of the infant universe when it transitioned from
an opaque plasma to a transparent gas.

The CMB originates from the recombination epoch when the universe cooled sufficiently for electrons and

protons to combine into neutral hydrogen atoms:
pt+e — H+y

The cosmic microwave background is a faint radiation that fills the universe and is a remnant of the
early hot, dense phase of the universe. It was first detected by Penzias and Wilson in 1965 and is often

considered the strongest evidence for the Big Bang.

14.11 Gravitational Lensing

14.11.1 Introduction

Gravitational lensing is the bending of light by mass according to general relativity. A mass distribution
between a distant source and an observer deflects light rays, producing phenomena such as multiple images,

magnification, and distortion of the source.

—
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For a point mass M (in Schwarzschild metric), a light ray with impact parameter.b is deﬂééf’é{é-k\i By ‘an angle
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in weak-field. Then, the deflection angle is

R 4GM
a(b) = o2

where G is the gravitational constant and ¢ the speed of light.

We use the thin-lens approximation: the deflection happens effectively at a single lens plane located at
angular diameter distance Dy, from the observer. Similarly, the source is at distance Dg and the distance
between lens and source is Dyg. Let 3 be the true angular position of the source on the sky (unlensed),

and 0 the observed angular position of the image. Then

B=0—a)
where the scaled deflection angle is
D
a(8) = =2 &(Do)
Ds

For a point mass M located on the optical axis, the scalar form of the lens equation (assuming alignment

along a single axis) becomes
Dys AGM

B D_SCQDLG

B=0

When the source, lens and observer are perfectly aligned (5 = 0) the image forms a ring (Einstein ring)

with angular radius g solving:
AGM Diys

Orr —
E 2 DyDsg

14.11.2 Derivation using Newtonian Mechanics

In Newtonian gravity, the force on a particle of mass m at distance r from M is

B GMm

r2

F

Only the component perpendicular to the initial direction of motion contributes to the deflection. If the

photon moves along the x-axis and passes the mass at distance b, then

b
r=vaZ+b2, sinf=-

r
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The transverse force is therefore

i GMmb GMmb
FJ_:FSHle:T;:m

The transverse acceleration is
B F GMb

T T @ e

The photon moves approximately at constant speed ¢, so

d
c=ct, dt="22
C

The total change in transverse velocity is

* L [ GMb
R B e sy S

/°° bdx _2
oo (T2 HB2)32 D

Av, = 7
UL be

Using the standard integral

we obtain

For small deflections, the bending angle « is approximately the ratio of the transverse velocity change to

the speed of light:

Av L
o ——
c
Hence,
2GM
ONewton —
Newt be2
General Relativity predicts a deflection angle
4GM
Q _=
GR be2

&
T

which is exactly twice the Newtonian result. The additional factor arises from the curv: _iiré)' of space,

which is absent in Newtonian gravity.
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14.11.3 Derivation using General Relativity

Definition. 14.2: Lagrangian

The Lagrangian L is defined as
L(g,q,t) =T(4) = V(q)

where 7' is the kinetic energy and V' is the potential energy.

Theorem. 14.3: Euler-Lagrange Equation

a (oo _oc
dt\9j) 0q

Theorem. 14.4: Fermat’s Principle

For light propagating in a medium with refractive index n(r), the time taken to travel along a path

B B 4 1 [B
T=/ dtz/ —Sz—/ n(r) ds
A AU cJa

C from point A to point B is

where

» v = c¢/n is the speed of light in the medium

o ds = \/dx? + dy? + d2? is the infinitesimal path length
o cis the speed of light in vacuum

Fermat’s principle states that the actual path C minimizes (or more generally, makes stationary) the

optical path length:

S:/ABn(r)ds
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galaxy cluster

Figure 11: Source: https://esahubble.org/images/heic1106c/

In weak-field approximation of the spacetime metric (which is a situation in which the gravitational

field is relatively weak and the spacetime curvature is small),

20 20 P2
d82 = — (1 + _2) Czdt2 + ( ) 6Ud]}ldfﬂ] + 0 ( )
c c? ct

where ® = —GM /r and |®] < ¢®. Set ¢ = 1.
ds® = —(1+2®)dt* + (1 — 2®)(da* + dy* + d2*) =0 = v~ 1+20

Consider a nearly straight path in the z-y plane with small deflection. Let y = y(x), z = 0, with |y/| < 1.
Then

— VT e ~ |14 507 do

The optical path length is

S = /ndl /1—2@ [1+;(y’)2}dx
/{1—2¢+2( )]d:c
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Consider
L= ()~ 28(x,)
YOy
dx \ 0y’ dy dx dy dx?
Let y(z) = b+ e(x) with € small:
(@) = ~25 (2.)

The total deflection angle is:

For a point mass & = —GM /r with r = /22 + y*

0P Yy
% ~ M

Aty =b:
*° dx
a=—-2GMb /oo —(:B2 )
Note that
o dx 2
oo (B2 V2322
Therefore,
2 4GM

The magnitude of the deflection (toward the mass) is

ol AGM
al = ——
b
In the metric, ® — ®/c*. Then
AGM
o =
bc?

Page 213 /




14 COSMOLOGY By Pika and Owen

14.12 Gravitational Wave

14.12.1 Introduction

Gravitational waves are disturbances in the curvature of spacetime caused by accelerated masses. They
were first predicted by Albert Einstein in 1916 as a consequence of his General Relativity theory. Unlike
electromagnetic waves, gravitational waves interact weakly with matter, making them challenging to detect

but allowing them to carry information about cataclysmic cosmic events.

14.12.2 Chirp Mass

For a binary system with component masses m; and ms, the chirp mass is

M = (mymy)3/5 _ C_S 371_78/3f711/3f' v
(m1 + m2)1/5 G \ 96

where f is the orbital frequency.

14.12.3 Binary System

For a binary system with masses m; and mo, and orbital frequency f,.;,, the gravitational wave luminosity

is
32
L =
W 56

(27GM fo, )10/

where r is the orbital separation.

14.13 Accretion Processes

14.13.1 Introduction

Accretion is the process by which matter falls onto a central object, such as a star, black hole, or neutron

star, under the influence of gravity.

e Spherical accretion occurs when matter falls radially inward toward a central object in a spherically

symmetric manner.

L
—

. . . . ,-’-':'T"\ y .
o Disc accretion occurs when matter, due to its angular momentum, forms ffx rotatlﬂg"(ysc;as it falls

= y /1

toward a central object. N, - ~’f
- - ¥ & i
s 4 Py "c\_. \ .‘\_.
; ' q E;/J/“'_'_\\ {, <>
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Figure 12: Source: https://www.skyatnightmagazine.com/space-science/accretion-disk

14.13.2 Eddington Luminosity

Consider a spherical surface with radius r centered around a light source, where the total luminosity of
the source is L. The energy flux (the energy per unit time passing through a unit area) at a distance r
from the source is given by the total luminosity divided by the surface area of a sphere with radius r. The

surface area of a sphere is

A = dmr?
Hence, the energy flux at distance r is:
L
F =
47r?

Now, consider the nature of radiation pressure. Photons carry momentum, and when they strike a surface,

they transfer momentum to it. The radiation pressure is related to the energy flux by the relationship:

1d F
E=pc = Pog= Adzto "

where c is the speed of light, and this formula assumes that the radiation is isotropic and that the photon

momentum transfer is fully efficient in transferring momentum to the surface. Then

1 L L
Pra = -
47 dnrr T dnrZe
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The radiation pressure on an object is given by

L

dmr2e

Prad -

where L is the luminosity, r is the radius of the object, and c¢ is the speed of light. The gravitational force

is given by
GMm

F, rav —
g T'2

where M is the mass of the central object, m is the mass of the accreting material, and G is the gravitational

constant. When balanced,

L GMm
Agr2e 2
Simplifying this equation:
4G Mmc
L=—+H—
,

For the Eddington luminosity, we consider the maximum luminosity for the material to remain bound
to the central object without being blown away by radiation pressure. Using the fact that the material
consists of hydrogen, for which the mass of an electron is m, and the Thomson scattering cross-section is

or, we can calculate the Eddington luminosity as follows:

4rGMm.c

ar

LEdd =

where o /&~ 6.65 x 1072 m? is the effective area that quantifies the likelihood of an electron scattering a

photon through Thomson scattering.

14.14 Cosmic Distance Ladder

14.14.1 Introduction

The cosmic distance ladder is a succession of methods by which astronomers determine the distances to
celestial objects. Each rung of the ladder provides information that allows calibration of the next method,

enabling measurements from the Solar System to the edge of the observable universe.
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The Cosmic Distance Ladder
RADAR & Parallax
0.001-1000 parsecs

Direct geometric methods
¢ Calibrates
Standard Candles: Cepheids & RR Lyrae

1-30 Mpc

Pulsating variable stars with period-luminosity relationship
¢ Calibrates
Tully-Fisher & Faber-Jackson Relations

10-200 Mpc

Galaxy luminosity correlated with rotation speed/velocity dispersion
¢ Calibrates

Type Ia Supernovae
100-1000 Mpc

"Standardizable” candles from white dwarf explosions
¢ Calibrates
Hubble’s Law

>100 Mpc

Cosmological redshift-distance relation

Figure 13: The hierarchy of distance measurement techniques in astronomy. Each rung calibrates the
next.

14.14.2 Radar Ranging

For objects within our Solar System, we can use radar to measure distances directly:
e Transmit radio waves toward a planet or asteroid
o Measure time delay for echo to return: At

At
e Distance: d = ¢

where c is the speed of light

 Limited to ~10 AU (within Solar System)
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14.14.3 Stellar Parallax

Parallax uses Earth’s orbit as a baseline to measure distances to nearby stars:

1
0 (arcseconds)

d(parsecs) =
where
o d = distance in parsecs (1 pc & 3.26 light-years)

o 0 = parallax angle in arcseconds

» Baseline = 1 AU (astronomical unit)

14.14.4 Standard Candles: Cepheid Variables
Stellar Variability Stellar variability is classified into two broad categories:
1. Regular Variability:

o Pulsating Stars: These stars, such as Cepheid variables, exhibit periodic changes in brightness

due to expansions and contractions of their outer layers.

« Eclipsing Binaries: These systems consist of two stars orbiting each other, and their light

curves vary periodically due to one star eclipsing the other.
2. Irregular Variability:

o Flare Stars: These stars exhibit sudden, unpredictable increases in brightness due to magnetic
activity.

o Cataclysmic Variables: These stars experience large variations in brightness due to mass

transfer in binary systems.

Cepheid Variables Cepheid variables are pulsating stars whose period correlates with luminosity:

M:aloglo(P)+b "_,,..-
- .f.':? i{‘ Tt
'S ¥ 4
where _ < - 4
-._. _.-_'- & - 'l _.l . /," =
o M is the absolute magnitude (intrinsic brightness), W O \ :
B v I__. /-?r_- \'f_ J.’)
a1 )
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o P is the pulsation period in days, and
e a,b are the calibration constants.

Once the absolute magnitude M is known from the period, the distance modulus formula gives the distance.

14.14.5 Faber-Jackson Relations

For elliptical galaxies, the velocity dispersion correlates with luminosity:

L xo”
where
o o is the stellar velocity dispersion
o [ = 4 empirically
1Og(L)Tully—Fisher Relation log(L) F'J Relation
% % % % > log(vrot) % % % % ~ log(o)
1 2 3 4 1 2 3 4

Figure 14: The Tully-Fisher and Faber-Jackson relations allow estimation of galaxy distances from mea-
surable kinematic properties.

14.14.6 Type Ia Supernovae

Type Ia supernovae are extremely luminous and serve as excellent “standardizable candles”:.

[
L

+ Result from thermonuclear explosion of white dwarf reaching Chandrasekhar limit (g Ji 4 Mo)

o Peak luminosity: ~10'" L (as bright as entire galaxy)

o Can be observed at cosmological distances
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« Light curve shape correlates with peak luminosity (Phillips relationship)

The distance is calculated from

pw=mp—Mp+a(s—1)— e
where
o is the distance modulus
e mp is the apparent magnitude in B-band
e Mp is the absolute magnitude (calibrated)
e s is the light curve shape parameter
e c is the color correction

e «, [ are the calibration coefficients
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15 Interstellar Medium

15.1 Introduction

The interstellar medium refers to the matter that exists in the space between stars within a galaxy. It
is composed of gas, dust, and cosmic rays.

It can be categorized into several distinct phases based on the temperature and density of the material:

« Neutral Gas: Consists of neutral hydrogen (H) and molecular hydrogen (Hs), often found in

molecular clouds.

o Tonized Gas: Composed of ionized hydrogen (H") and other ionized elements, typically found in

regions such as HII regions.

e Dust: Microscopic solid particles that can range in size from nanometers to microns, contributing

to the absorption and scattering of light.

o Cosmic Rays: High-energy particles, primarily protons and atomic nuclei, that travel through the

ISM.
Some important regions within the interstellar medium include:

o HII Regions: These are regions of ionized hydrogen, created by the ultraviolet radiation from

young, hot stars. They are often observed in emission lines such as Ha.

e Molecular Clouds: These are cold, dense regions of the interstellar medium where molecules such

as Hy are found. They are often the birthplaces of stars.

o Warm Ionized Medium: A diffuse component of the interstellar medium, where the gas is partially

ionized and has a temperature around 10* K.

15.2 Fluid Dynamics

15.2.1 Stress Tensor

In continuum mechanics, the stress tensor o is a fundamental concept that describes thé{’if_l-t-él‘cl‘lal forces

acting within a material or fluid. p— Sl ,/1 » '
. f*.' -
— =N
= , _')/r.&—'—* . %
\h// ol {’§>
g
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For a general three-dimensional space, the stress tensor o is a 3 X 3 matrix, with components o;; where ¢

and j refer to the directions (or axes) in space:

where
* Ous,0yy, 05, are the normal stress components in the x, y, and z directions.
* Oy, 0z, 0y, are the shear stress components.

e The matrix is symmetric: 0;; = ;.

15.2.2 Tensor Product

Definition. 15.1: Tensor Product

Let V and W be vector spaces over a field F. The tensor product V®W is a vector space equipped

with a bilinear map

RQX:VXW —VeW

satisfying the following universal property: For every bilinear map ¢ : V. x W — U to any vector
space U, there exists a unique linear map q~5 : V®W — U such that the following diagram

commutes:

VxW -25veWw

Xl‘g

U

Tensor product of two vectors A and B is given by
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15.2.3 Divergence Theorem

Theorem. 15.1: Divergence Theorem

/ F-ndS= [ V-FdV
v 1%

where

F is a vector field,

V' is the volume enclosed by the surface 0V,

n is the outward-pointing unit normal vector on the surface 9V, and

dS is the surface area element on 9V

15.2.4 Continuity Equation and Momentum Equation

Let p(x,t) denote the mass density and v(x,t) the velocity field of a fluid. The total mass within a fixed

control volume V' with boundary 0V and outward unit normal n is

Mv(t):/vpdv

The principle of mass conservation states that the rate of change of mass within V' equals the negative of

the net mass flux through the boundary:

d
— pdV:—/ pv-ndS
dt Jy av

/apdV——/anwndS
/apdV——/V~(pv)dV
/V(gt+v (p ))deO

As V is fixed in space,

By the divergence theorem,

Hence,
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As V is arbitrary, the integrand must vanish everywhere and

dp B
EJrV-(pv)—O

which is the local form of continuity equation.

By the material derivative D/Dt = 9/0t +v -V,

Dp
Py V-v=0
pr PV

Consider the momentum of fluid within a fixed control volume V:

/ pvdV
1%

i/pvdV:—/ pv(v-n)d5+/ O'-ndS+/pde
dt Jy ov ov v

where
e 0o is the stress tensor,
« fis the body force per unit mass (e.g. gravity).

Using the divergence theorem,

/ pv(v-n)dSz/V-(pV@V)dV, / a'-ndS:/V-a'dV
av v ov v

Therefore,

/V<%(pv)+v'(pv®v)_V.o-_pf)dvzo

As V is arbitrary,

0
a(pv)—}—v-(pv@v)zv-a'ijf

which is the Cauchy momentum equation in conservation form. Using the continuity equation, it

can be rewritten in material-derivative form:

Dv

2 _v. f
th V.-o+p
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15.2.5 Euler’s Equation (Special Case of Navier-Stokes Equation)

From

0
a(pv)—l—V-(pv@v):V-a—I—pf

where p is the density of the fluid, v is the velocity of the fluid, o is the stress tensor, and f represents

external body forces per unit mass.

0 v dp
&(PV) e + Vor

Ve (pv@v) =v-V(pv) =v-V(p)v+pv-Vv

For an inviscid fluid (no viscosity), the stress tensor only contains the pressure term:
o= —pl
where p is the pressure and I is the identity matrix. The divergence of the stress tensor is
V-o=-Vp

ov dp
pa—i—vg—i—v-VpV%—pwVV——Vp—pr

For an incompressible flow (constant p):

%20 and Vp=0

0
This implies that the terms Va—';) and v - Vpv vanish. Hence,

0
pa—;’-l-pv-Vv:—Vp-l-pf

ov 1
- . - f
5 +v-Vv pr+
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15.3 Case Study

15.3.1 Background

The interstellar medium consists of gas and dust at various densities and temperatures, organized into
molecular clouds, atomic gas, and ionized phases. Gravitational collapse occurs when self-gravity over-

comes pressure support, leading to star formation. The interstellar medium exhibits a wide range of

densities:
Phase Density, p (g cm™?) | Collapse Timescale, tg
Molecular Cloud (diffuse) 4.2 x 107 ~ 107 yr
Molecular Cloud (dense core) 42x107% ~ 10% yr
Atomic HI Cloud 4.2 x 107 ~ 10% yr
HII Region 4.2 x107% ~ 10 yr

15.3.2 Derivation

« Continuity equation (mass conservation):

dp B
§+V~(pv)—0

« Euler equation (momentum conservation):

ov 1
Y v-V)v=—-Vp -V
8t+<v WV p P

« Poisson equation for the gravitational potential where V2f = V - (Vf) and V2® = f:

V20 = 4nGp
Consider an uniform background: _
- .f.':? i:‘ finr<
p=pot+dp, v=0v, p=po+dp, L=+ . W ¢
_.-_- = *n' . r.
To isolate pure gravitational collapse, we consider the pressure-less limit: o \
m 44 2P
U <
| o
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e Linearized continuity equation:

« Linearized Euler equation (no pressure):

dov
vl —Vid
o Linearized Poisson equation:
V26® = 47G op
Therefore,
0 2
Z(V . — _V25d
T (V-dv) AV
and then
0
(V- — 4
5’t(v ov) G dp
Also,
0%6p 0
012 + poa(v : 5V) =0
Finally,
9%6p
o2 + po [—47TG5P] =0
Hence,
02%6p
2 AtGpoop

which is in the form of dp = w?dp with
w? = 41Gpy > 0

The e** mode represents exponential growth of density perturbations which represent gravitational collapse.
The e " mode decays and is typically not physically relevant for collapse initial conditions. The e-folding

time (characteristic growth/collapse timescale) is

1 1
ViarGpo  Gpo

T

1
w
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16 Study of the Earth

16.1 Tides

Tides are the periodic rise and fall of sea levels caused by the gravitational forces exerted by the Moon

and the Sun on Earth.

gravitational pull
combined gravitational _ _ ¢ et Hheligen OMoon
pull of theSunand . ~ =y gravitational > e ™
theMoon  ~ s pull of the Sun , \
/ Earth ¥ ’
/ : \ {
. \
\ /
Sun | Sun V
! \
\ b \
Moon \righ tide / % . /
\ / \ low tide /
N low tide s N o 4
\\\*-—/// \\\hlghtlde’//

© Encyclopaedia Britannica, Inc.

Figure 15: Source: https://www.britannica.com/science/tide

16.2 Seasons

Seasons are caused by the tilt of Earth’s axis (23.5°) relative to its orbit around the Sun.
e Summer occurs in the hemisphere tilted toward the Sun.
o Winter occurs in the hemisphere tilted away from the Sun.

e Spring and Autumn occur when neither hemisphere is tilted toward the Sun.

March 21

June 21 December 21

*/é\ ¢

¢ >

\‘/

September 22
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16.3 Factors Influencing Climate

Climate depends on several natural factors:

Latitude: Distance from the equator affects temperature.

Altitude: Higher altitudes are cooler.
e Ocean Currents: Warm or cold currents can affect coastal climates.
o Topography: Mountains can block winds and affect rainfall.

Human Activities: Urbanization and greenhouse gases influence climate.

16.4 Eclipses

16.4.1 Solar Eclipse

It occurs when the Moon comes between the Earth and Sun, blocking sunlight.

16.4.2 Lunar Eclipse

It occurs when the Earth comes between the Sun and Moon, casting a shadow on the Moon.

16.5 Space Weather

16.5.1 Introduction

Space weather refers to the dynamic conditions in Earth’s space environment, primarily influenced by the

Sun.

16.5.2 Solar Wind

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the

corona. It affects the Earth’s magnetosphere and can disrupt satellite communications.

16.5.3 Solar Flares ﬂ r

/1"" B
| y

Solar flares are sudden bursts of radiation from the Sun. They release energy across the electr()m%netlc

’/

spectrum, which can impact radio communications and GPS systems on Earth. ' T rf
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16.5.4 Coronal Mass Ejections (CMEs)

CMEs are massive bursts of solar wind and magnetic fields rising above the solar corona. They can trigger

geomagnetic storms that affect satellites, power grids, and auroras.

16.5.5 Aurorae

Aurorae (Northern and Southern Lights) are caused by charged particles from the Sun interacting with

Earth’s magnetic field and atmosphere.

16.6 Meteor Showers

Meteor showers occur when Earth passes through the debris left by a comet.

16.7 Equinoxes

An equinox occurs twice a year, when the Sun crosses the celestial equator. On these dates, day and

night are approximately equal in length at all latitudes. The two equinoxes are:

e Vernal Equinox: Occurs around March 20th or 21st, marking the start of spring in the northern

hemisphere.

o Autumnal Equinox: Occurs around September 22nd or 23rd, marking the start of autumn in the

northern hemisphere.

At the equinoxes, the Sun rises directly in the east and sets directly in the west.

16.8 Solstices

A solstice occurs twice a year when the Sun reaches its highest or lowest point in the sky at noon, relative

to the celestial equator. This results in the longest and shortest days of the year.

e Summer Solstice: Occurs around June 21st or 22nd. The Sun is at its northernmost point,
resulting in the longest day of the year in the northern hemisphere and the shortest_day in the

southern hemisphere. .

o Winter Solstice: Occurs around December 21st or 22nd. The Sun is aif its. southernm,ostfomt
resulting in the shortest day of the year in the northern hemisphere and the longest day m*ﬁe ]

. \

southern hemisphere. gl N ﬁ_-_f‘ \ &

i k= . b { .>
-
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16.9 Solar Declination

Solar declination is the angle between the rays of the Sun and the plane of the Earth’s equator. It varies
throughout the year, reaching +23.5° during the summer solstice and —23.5° during the winter solstice.

At the equinoxes, the solar declination is 0°, meaning the Sun is directly above the equator.

17 Study of the Moon

17.1 Precession

Precession is the slow, conical motion of the Earth’s rotation axis caused primarily by the gravitational

torque of the Sun and Moon on Earth’s equatorial bulge.
Rate of precession ~ 50.3" per year

Proof. Consider the Earth as an oblate spheroid with equatorial radius R. and polar radius R,. The

Earth’s equatorial bulge experiences a gravitational torque due to the Sun (or Moon):
T=1rXxF

The magnitude of the torque is proportional to the Earth’s moment of inertia difference and the gravita-

tional force:
N 3G M,

T =
213

(C — A)sin 26
where

e ( is the gravitational constant,

e M, is the mass of the Sun,

r is the Earth-Sun distance,

e (' and A are the Earth’s principal moments of inertia about polar and equatorial axes respectively,

and N .4-2';':;_ Vi
« 0 is the obliquity of the ecliptic (x 23.5°). - L o o e .l
L’ \ y fr. x'/" :
= ® I\
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The precessional angular velocity €2, is given by the ratio of the torque to the Earth’s spin angular

momentum L = Cw:

T 3GM,C - A
= cos

0 -
P Cw 2r3 Cw

Here, w is the Earth’s spin angular velocity. The cosf factor appears due to the component of torque

perpendicular to the spin axis. For an oblate Earth,

2
O—A:g R2J,

where
e M, is the Earth’s mass,
o Jo~1.0826 x 1073 is the dynamical flattening coefficient.

The precessional angular velocity becomes

o 3GM5 %MeREJQ

2r3 Cw cos

Q2

2
Using C' ~ gMeRz, we simplify:
__ 3GM;

273w

Jocos O

Substitute the values

G =6.674 x 10" m3kg~'s 2
M, =1.989 x 10* kg
r=1.496 x 10" m
w="7.292 x 10" °rad/s
Jo =1.0826 x 107°

0 = 23.5°

Rate of precession = ), x 206264.8” x 3.156 x 107 s/year ~ 50.3" /year
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17.2 Nutation

Nutation refers to small periodic oscillations superimposed on the precessional motion. These are caused
by the varying positions of the Moon and Sun relative to Earth, leading to deviations in the tilt of Earth’s

axis.

17.3 Libration

Libration is the apparent oscillation of the Moon that allows observers on Earth to see slightly more than

half of its surface over time. There are three main types:
o Longitudinal libration: Due to the eccentricity of the Moon’s orbit.
o Latitudinal libration: Due to the tilt of the Moon’s axis relative to its orbital plane.

« Diurnal libration: Due to the rotation of the Earth and the observer’ s changing viewpoint.

18 Study of the Solar System

18.1 Formation

The Solar System formed about 4.6 billion years ago from a giant molecular cloud composed of gas and

dust. The process can be divided into several stages.

18.1.1 Nebular Hypothesis

The nebular hypothesis explains that the Solar System formed from a rotating disk of gas and dust. This
cloud, known as the solar nebula, collapsed under its own gravity, leading to the formation of the Sun
at its center and the planets from the remaining material. The key stages in the formation of the Solar

System are as follows:P

1. Collapse of the Solar Nebula: The gas and dust cloud began to contract due to gravity. As it

contracted, it started to rotate faster, forming a flat, rotating disk.

i

2. Formation of the Sun: At the center of the disk, the temperature and pressure igeiéase(fi,ﬂ leading

to nuclear fusion, which ignited the Sun. o B 1
i = - ,""- _,_._\...__.--' _.-‘,‘

7 VAR 48
= -2 {\g
= % AR

\h// ) {’q‘}
-~
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3. Accretion of Planets: In the outer regions of the disk, dust and gas began to clump together
to form planetesimals, which further collided and merged to form planets, moons, and other small

bodies.
4. Clearing the Nebula: The young Sun’s solar wind cleared away the remaining gas and dust,
leaving behind the current structure of the Solar System.
18.1.2 Differentiation and Evolution

After the initial formation, the Solar System underwent several evolutionary processes:

o Differentiation: The early planets were molten, and heavier materials sank toward their cores

while lighter materials rose to the surface.

o Late Heavy Bombardment: During the early stages, the planets were frequently bombarded by

leftover planetesimals, causing cratering on their surfaces.

e Orbital Evolution: Gravitational interactions between planets and other bodies in the Solar System

led to changes in their orbits over time.

18.2 Structure and Components of the Solar System

The Solar System is composed of the Sun and all the objects that are bound by its gravitational field,

including planets, moons, asteroids, comets, and other small bodies.

18.2.1 The Sun

The Sun is the central star of the Solar System, providing the gravitational force that holds the system
together. It is composed primarily of hydrogen and helium and accounts for approximately 99.86% of the
total mass of the Solar System. The Sun’ s core is where nuclear fusion occurs, generating the energy that

powers the Sun and supports life on Earth.
18.2.2 Planets
The modern scientific definition of a planet was formally established by the InternationalJAstronomical

Union (IAU) in 2006. According to the TAU, a celestial body is classified as a planet if 1t§atlsﬁesf'111 of

T

the following three criteria: o f d/’f [
> 4 b \ B
= , _')/r.&—'—* . %
\h// ol {’§>
g

Page 234 / \ | I:‘-::._‘} '1 \frﬁ}—



18 STUDY OF THE SOLAR SYSTEM By Pika and Owen

o It orbits the Sun. The object must revolve around the Sun, distinguishing planets of the Solar

System from moons, which orbit planets, and from extrasolar (exoplanetary) systems.

o It has sufficient mass for its self-gravity to overcome rigid body forces, so that it assumes
hydrostatic equilibrium (a nearly round shape). This condition ensures that the object is

massive enough for gravity to shape it into a roughly spherical form.

o It has cleared the neighbourhood around its orbit. The object must be gravitationally
dominant in its orbital region, meaning it has either accreted or scattered most other bodies of

comparable size near its orbit.

An object that meets the first two criteria but has not cleared its orbital neighbourhood is classified as a
dwarf planet (e.g. Pluto, Ceres, and Eris). There are eight planets in the Solar System, divided into two

main categories:

Terrestrial Planets The terrestrial planets are rocky bodies with solid surfaces and relatively high

densities. They are located in the inner Solar System:
e Mercury
 Venus
« Earth
o Mars

These planets are characterized by thin or moderate atmospheres, slow rotation rates compared to gas

giants, and a composition dominated by silicate rocks and metals.

Gas Giants and Ice Giants The giant planets are large, massive planets with thick atmospheres and

no well-defined solid surfaces. They are further divided into gas giants and ice giants:
o Gas giants: Jupiter, Saturn

o Ice giants: Uranus, Neptune

—
a"'-_.

B
Fas

Giant planets possess strong gravitational fields, extensive systems of moons, ar_i_'(} pro__minént fring _sygems.
s i\ : y ) - B
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18.2.3 Smaller Bodies

The Solar System also contains numerous smaller bodies, including
o Asteroids: Rocky bodies that primarily orbit between Mars and Jupiter in the asteroid belt.

o Comets: Icy bodies that often have highly elliptical orbits, and develop tails when they approach

the Sun.

« Meteoroids: Small fragments of asteroids or comets that can enter Earth’ s atmosphere and cause

meteor showers.

18.2.4 Kuiper Belt and Oort Cloud

The outer regions of the Solar System are populated by icy bodies and dwarf planets:
o Kuiper Belt: A region beyond Neptune that contains icy bodies, including dwarf planets like Pluto.

e Oort Cloud: A hypothetical cloud of icy bodies that is believed to surround the Solar System at

great distances, thought to be the source of long-period comets.

19 Study of the Sun

19.1 Composition

The Sun is primarily composed of hydrogen and helium, with trace amounts of heavier elements. Hydrogen

nuclei (protons) undergo nuclear fusion in the solar core:
4p — *He 4 2™ + 2u, + v + 26.7 MeV

powering the Sun through the proton-proton chain.

19.2 Internal Structure

1. Core: p —
« Radius: ~ 0.2 R - = /1
 Site of nuclear fusion: 4p — ‘He + 2¢* + 2u, + 26.7 MeV - L/ ) « -
p \\ '-.. g
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« Temperature: ~ 1.5 x 10" K
2. Radiative Zone:

o Energy transported by radiation

o Temperature gradient decreases outward
3. Convective Zone:

o Energy transported by convection
« Outer ~ 30% of Sun’ s radius

« Convection cells cause granulation on the photosphere

19.3 Atmosphere
o Photosphere: Visible surface; T ~ 5800 K
« Chromosphere: Above photosphere; hotter than photosphere; T ~ 10* K

« Corona: Outermost layer; T ~ 10° K; source of solar wind

19.4 Solar Surface Activities

19.4.1 Sunspots

Sunspots are temporary dark regions on the solar photosphere (visible surface of the Sun) caused by strong

magnetic fields.

19.4.2 Solar Wind
The solar wind is a continuous outflow of plasma from the solar corona. The solar wind consists mainly of
)

« Protons (p

» Electrons (e7)

« Alpha particles (o = *He®") . Pl
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The solar corona has high temperature (7' ~ 1 x 10° K). The sound speed is

kT

mp

Cg ™~

As the corona cannot remain static with such high thermal pressure, the plasma expands outward, forming
the solar wind. Plasma is often called the fourth state of matter. It is a fully or partially ionized gas,
meaning that a significant fraction of the atoms or molecules are electrically charged (ions and electrons).
The heliosphere is the region of space dominated by the solar wind and the Sun’s magnetic field, extending
well beyond the orbit of Pluto.

The magnetosphere is the region around a planet where the planetary magnetic field dominates the

motion of charged particles, protecting the planet from the solar wind.

19.5 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the physical theory that describes the dynamics of electrically conduct-
ing fluids in the presence of magnetic fields. Such fluids include plasmas, liquid metals, and saltwater.

MHD combines principles from:
o Fluid dynamics (Navier-Stokes equations),
+ Electromagnetism (Maxwell’s equations), and
e Thermodynamics

In the MHD approximation, the plasma is treated as a single conducting fluid rather than as separate ions
and electrons. This approximation is valid when the characteristic length scales are much larger than the

particle mean free paths and the Debye length. The basic set of ideal MHD equations consists of:

dp B
E‘FV-(pV)—O

where p is the mass density and v is the fluid velocity.

ov '
p<8—+V'VV):—Vp+JXB+pg P =
t ._ f/ i”—"-; - L .
iy a /1 P
—— b \
L7 P X ¢
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where p is the gas pressure, B is the magnetic field, J is the current density, and g is the gravitational

acceleration.

B
%—t:Vx(va)—Vx(anB)

where 7 is the magnetic diffusivity. In ideal MHD, n = 0.
V-B=0

which expresses the absence of magnetic monopoles. The Sun is composed primarily of ionized hydrogen
and helium, making it an excellent example of a natural MHD system. Different layers of the Sun exhibit

different MHD behaviors:
» Solar interior: Dense plasma with strong coupling between flow and magnetic fields.
o Photosphere and chromosphere: Visible surface where magnetic structures emerge.
o Corona: Extremely hot, low-density plasma dominated by magnetic forces.

The Sun possesses a large-scale magnetic field generated by a solar dynamo. This dynamo operates in

the convection zone and is driven by
« Differential rotation,
e Turbulent convective motions,
o Plasma conductivity.

MHD equations describe how plasma flows stretch, twist, and amplify magnetic field lines, converting
kinetic energy into magnetic energy. Sunspots are regions of strong magnetic fields that inhibit convective
heat transport. In MHD terms, the magnetic pressure

B2

Pmag = 2_,uo

partially balances the gas pressure, leading to cooler and darker regions on the solar surface. Solar flares
and coronal mass ejections (CMEs) are dramatic manifestations of MHD processes. They are powered, by

magnetic reconnection, a non-ideal MHD process in which magnetic field lines break?ﬁia&“gseconnect,

L, & y v

rapidly releasing stored magnetic energy. This energy is converted into oy, <L
e Thermal heating, w \
B o N
f "‘-_:3
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o Particle acceleration,
o Electromagnetic radiation.

MHD predicts the existence of wave modes in magnetized plasmas. One important example is the Alfvén

wave, which propagates along magnetic field lines with speed

B
v Hop

Vg =

Proof. Consider an ideal, perfectly conducting plasma with uniform background magnetic field By = Bz,
uniform mass density p, no background flow (vo = 0), and small perturbations in velocity and magnetic

field. The governing equations are

ov

— =— JxB
P Vp+J x

For incompressible, transverse perturbations, pressure gradients can be neglected, giving

p% =JxB
By Ampere’s law neglecting displacement current,
J= iV x B
Ho
Note that
88_]? =V x (vxB)
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Let the magnetic field and velocity be written as

B:B0+b, V=V

where b and vy are small perturbations. To first order, the equation of motion becomes

8V1 1
—_— = b) x B
"o (V xb) x By
The linearized induction equation is
db
E =V x (Vl X Bo)

Take the time derivative of the equation of motion:

82V1 1 8b
pw—%(VxE) XBO
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Substitute the induction equation:

0? 1
pat‘;l :,LL_O[VX(VX (V1XBO))] XBO

For transverse waves propagating along By (take 9/0z # 0 only), this simplifies to

82V1 . Bg 82V1
otz pgp 022

The above equation is a standard wave equation of the form

82V1

ot? 4922

from which we identify the Alfvén speed as

By
v/ Hop

VA =

20 Human and Robotic Exploration within the Solar System

20.1 Human Exploration of the Solar System

Human exploration of the Solar System involves sending astronauts beyond Earth to explore, study, and

potentially inhabit other celestial bodies.

o Purpose: advancing scientific knowledge, developing space technology, inspiring societies, and en-

suring long-term survival of humanity.

e Major challenges: long-duration exposure to microgravity, cosmic radiation, limited medical sup-

port, psychological isolation, and safe re-entry.

« Key destinations: the Moon for testing technologies, Mars for long-term exploration, and near-

Earth asteroids for scientific and resource studies.

o Approach: step-by-step expansion using space stations, lunar missions, and sustainz__xl:)'_l:'c{ lifesupport

systems. (. -
o e /1
ey ,""- - ..__.--’/a
= = *n' // .
. i -.)r.‘-— \ < A
». 5
\\__.(_1/:/ \ 4 <>
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20.2 Planetary Missions

Planetary missions are robotic or crewed missions designed to explore planets, moons, asteroids, and

comets.
o Flyby missions: provide brief but valuable observations with minimal fuel and mission complexity.
e Orbiter missions: allow long-term monitoring, global mapping, and atmospheric studies.

o Landers and rovers: enable direct surface analysis, geology, and chemical investigations, but

require complex entry, descent, and landing systems.

» Scientific value: reveal planetary formation history, climate evolution, and potential habitability.
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Part II: Data Analysis

21 Probability

21.1 Introduction

The probability of an event A is a number between 0 and 1 that represents the likelihood of the event

occurring. It is defined as
Number of favorable outcomes

P(A)

~ Total number of possible outcomes

For example, the probability of getting heads in a fair coin toss is:
1
P(Heads) = 3
The probability of the complement of an event A, denoted as A°, is:
P(A%) =1- P(A)

1 1
For example, if P(Heads) = 3 then the probability of getting tails, P(Tails) = 5
The probability of event A occurring given that event B has occurred is called conditional probability and

is denoted as P(A|B). It is given by
P(ANB)

P(AIB) = — 55

This is the probability of A given B, assuming P(B) > 0.

21.2 Random Variables

A random variable is a numerical outcome of a random phenomenon. It can be classified as either discrete

or continuous:
» Discrete Random Variable: Takes distinct values (e.g., number of heads in 10 coip-fosses).

« Continuous Random Variable: Takes any value within a given range (e.g., heighj{ré% ind}i_'\;iduals).
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The probability mass function (PMF) gives the probability of each possible outcome for discrete random
variables. For example, the PMF of a fair die roll (with outcomes 1,2,3,4,5,6) is

1
P(X =zx)= g 2 €{1,2,3,4,5,6}

The probability density function (PDF) is used for continuous random variables. The probability that a
continuous random variable X takes a value in the interval [a, b] is given by the integral of the PDF over

that interval:

P(angb):/be(x)dx

where fx(x) is the PDF of X.

22 Linear and Logarithmic Scale

In a linear scale, the distance between points is the same for each increment. The axis values increase by
a constant amount.

In a logarithmic scale, the distance between values is proportional to the logarithm of the values:

Example
10t |
10° |
10% |
10" |
| K
2 3 4 5
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23 Measure of Central Tendancy

Definition. 23.1: Mean

The mean 7 is the sum of all values divided by the number of observations. For a sample of size n,

Definition. 23.2: Median

p
S
<.
Il
-

The median is the middle value when the data is ordered from least to greatest.

o If n is odd: The median is the value at position

o If n is even: The median is the average of the two middle values.

Definition. 23.3: Mode

The mode is the value that appears most frequently in the dataset.

24 Measure of Dispersion

24.1 Basic Concepts

Definition. 24.1: Quartile

Quartiles are statistical measures that divide an ordered dataset into four equal parts. They help

describe the spread and distribution of the data. The three quartiles are:

Q1 (first quartile), Q2 (second quartile or median), @3 (third quartile)

These quartiles divide the data into four segments, each containing 25% of the observations.

Definition. 24.2: Standard Deviation
Standard deviation is a measure of the spread or dispersion of a set of numerical data. It tells us how

much the values deviate, on average, from the mean (average). A small standard deviation indicates

that the data points are clustered close to the mean, while a large standard deviation indicates that
¥
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the data are spread out. For the data points

L1,22,X3,...,TN

the standard deviation is defined as

(z; — 7)?

@
Il
—

Q
|
=

24.2 Box Plots (Box-and-Whisker)
A box plot is a graphical method for displaying the distribution of numerical data using five key summary

values:

— —

Min Max
Q1 Median (Q2) Q3

25 Full Width at Half Maximum

FWHM is the width of a curve measured at half of its maximum amplitude.

Example. For Gaussian function

_ (z—p)?

flw) = A5

where
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« A is the amplitude (maximum value) of the Gaussian,
o 1 is the mean (center) of the distribution,

0 is the standard deviation (width) of the distribution.

From
e_(z;;)? B é
2
_(e—w)? 1
(& T202 = —
2
2
— 1
—M =ln-=—-1In2
202 2

(x —p)* =20%1In2

The points x; and x5 are

r=putov2in2

Therefore, the FWHM is
FWHM =23 — 21 =20v2In2

26 Error Analysis

In experimental measurements, quantities have uncertainties or errors. If a function depends on multiple

variables:

z= f(z,y,...)

and x,y, ... have uncertainties Ax, Ay, ..., then the approximate uncertainty in z is

0z 2 0z 2
Az =~ \/(gAZL‘) + (8_yAy) + ...
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27 Regression Analysis

27.1 Linear regression

27.1.1 Introduction

Linear regression is a fundamental supervised learning algorithm used to model the relationship between
a scalar response (dependent variable, Y) and one or more explanatory variables (independent
variables, X'). For simple linear regression (one independent variable), the relationship is modeled by

a straight line:

9= Bo+ Bix

Where g is the predicted response, x is the independent variable, 3, is the intercept, and ; is the slope.

27.1.2 Least Squares Method

The goal is to find the optimal coefficients (S, 51) that make the line best fit the observed data points
(x;,y;). The best fit is defined by the least squares method, which minimizes the sum of the squares of

the residuals (errors).

Definition. 27.1: Residual

A residual, e;, for the i-th data point is the difference between the actual value y; and the predicted
value ¢;:

e =Y — Ui =Y — (Bo + frxi)

Definition. 27.2: Cost Function

The cost function, J(Sy, 51), is the quantity we want to minimize:

n

J(Bo, B1) = Zef = Z(Z/z — (Bo + frs))”

i=1

Theorem. 27.1: Linear Regression

To find the minimum of J(f, 51), we set the partial derivatives with respect to Sy and (31 to zero.

This leads to the following solutions for the optimal coefficients, Bo and ﬁlz
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o The optimal slope coefficient is given by

o The optimal intercept coefficient is then found using the fact that the regression line must pass

through the point of means (z,y):

>

(=)
I
Nl
|
=
S
5]

27.2 Nonlinear Regression

Nonlinear regression aims to fit a curve to data where the relationship between variables is not linear.

While computers can do this accurately, it is possible to get an approximate fit manually using eyes and

pen.

Draw a smooth curve that visually passes as close as possible to all points. Adjust the shape until it

captures the overall trend.

Page 250 /




28 INSTRUMENTATION AND SPACE TECHNOLOGIES By Pika and Owen

Part III: Observational Astronomy

28 Instrumentation and Space Technologies

28.1 Telescope

28.1.1 Type of Telescope

Optical Telescope Refracting telescope uses lenses to bend (refract) light to a focal point.
o Advantages: Sealed tube, no central obstruction, good for planetary observation
o Disadvantages: Chromatic aberration, size limitations, expensive
e Structure: Objective lens — Tube — Eyepiece
Reflecting telescope uses mirrors to reflect light to a focal point.
« Types by Optical Design:

1. Newtonian: Primary parabolic mirror and flat secondary diagonal

[\]

. Cassegrain: Primary hyperbolic and secondary convex mirror

3. Ritchey-Chrétien: Both mirrors hyperbolic (no spherical aberration)

W

. Nasmyth: Light directed to side of telescope
o Advantages: No chromatic aberration, easier to make large apertures

« Disadvantages: Central obstruction, coma in some designs

Radio Telescopes Radio telescopes collect radio waves using large parabolic dishes or arrays.
« Examples: Arecibo (305 m), FAST (500 m), ALMA (array)

o« Components: Dish, feed antenna, receiver, amplifier, recorder

Fose 201/ v B
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By Pika and Owen

Mount Type Advantages Disadvantages
Altazimuth Simple, compact Field rotation
Equatorial Natural tracking Complex, heavy

Fork Stable for Cassegrains | Limited sky access

German Equatorial

Good balance

Meridian flip required

Table 9: Comparison of telescope mount types

28.1.2 Mount Types

28.1.3 Key Components

1. Primary Mirror/Objective: Main light-gathering element

2. Secondary Mirror: Redirects light path (in reflectors)

3. Focuser: Adjusts position of eyepiece or instrument

4. Eyepiece/Instrument: Final light analysis

5. Mount: Supports and points the telescope

6. Drive System: Tracks celestial objects

28.1.4 Linear Magnification

The magnification of a telescope is the factor by which the telescope increases the apparent size of an

object. It is given by

_ Jovj

M =
feye

where fop; is the focal length of the objective lens or mirror and fey. is the focal length of the eyepiece.

28.1.5 Angular Magnification

Consider an object of height h placed at a distance D from the eye. The angle 6 subtended at the eye

(called the visual angle) is

The approximation tanf ~ 6 is valid for small angles (measured in radians), -'Which__._is fi{piéal 1n
e : Va

systems.

h
0 ~tanf = — <1
an D (0 <1)
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Angular magnification M is defined as

| R

where
e ¢ is the angle subtended at the eye when viewing the object through the lens,

« 0 is the angle subtended at the eye when viewing the object directly (unaided eye).

28.1.6 Chromatic Aberration

Chromatic aberration is an optical defect of lenses that arises due to the dispersion of light. It occurs
because the refractive index of lens material depends on the wavelength of light.

The refractive index n of a transparent medium is a function of wavelength A:
n = n(\)

In general, shorter wavelengths (violet light) experience a higher refractive index than longer wavelengths
(red light):

Nyiolet = Mred

The focal length f of a thin lens is given by the lens maker’s formula (for thin lens)

Hence, different colors of light are brought to focus at different positions along the optical axis.

28.1.7 f-number

The focal ratio (or f-number) is the ratio of the telescope’s focal length f to the diarrlle-ter'jD of the

aperture:

fl# =1
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A smaller focal ratio corresponds to a wider field of view and faster exposure times, which is important
for observing faint objects.
28.1.8 Light-gathering Power

The light-gathering power of a telescope is its ability to collect light from an astronomical object. This
is important because the more light a telescope can gather, the fainter objects it can detect. The light-

gathering power is proportional to the area of the telescope’s aperture, A, which is typically circular. The

(3

where D is the diameter of the aperture. Therefore, the light-gathering power is proportional to the square

formula for the area of a circular aperture is

of the aperture diameter:

L x D?

This relationship means that a telescope with a larger aperture collects more light, allowing for observations

of fainter objects.

28.1.9 Adaptive Optics

Adaptive optics is a technology used to improve the performance of optical systems by compensating
for distortions caused by the Earth’s atmosphere. These distortions, known as atmospheric turbulence,
can blur images taken with ground-based telescopes. Adaptive optics systems use deformable mirrors to

correct for these distortions in real-time. The process involves
1. A guide star or laser is used to create a reference point in the sky.
2. A wavefront sensor measures the distortion of the light coming from the guide star.
3. A computer calculates the necessary corrections to the wavefront.
4. A deformable mirror adjusts the light path, compensating for the distortion.

The result is sharper images with significantly reduced atmospheric distortion. ';f" |
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28.1.10 Artificial Light

Artificial light pollution affects astronomical observations, particularly in urban areas. The brightness of
the night sky due to artificial lighting can drown out faint celestial objects, making it harder to observe
stars, planets, and galaxies. Efforts such as light pollution mitigation are crucial for preserving the

quality of astronomical observations.

28.2 Interferometer

Geometric Model of a Two-Element Interferometer A two-element interferometer uses two tele-
scopes to observe the same astronomical object simultaneously. The signals from the two telescopes are
combined, and the interference pattern is analyzed to extract higher resolution data than a single telescope
could provide. For two telescopes separated by a distance D, the resolution of the interferometer is related
to the wavelength A of the observed light and the baseline D by the following formula for the angular
resolution 6:

0~ =
D

Aperture Synthesis Aperture synthesis is a technique used in radio astronomy and interferometry to
create an image with the resolution of an aperture much larger than the physical size of the telescope. The
method involves observing the same object with multiple telescopes at different positions and combining
the data to simulate the effect of a much larger telescope.

The resolution of a synthetic aperture is determined by the maximum separation between the telescopes,
referred to as the baseline. By changing the positions of the telescopes, astronomers can collect data at

multiple baselines, which allows them to improve the resolution over time.

28.3 Detector

28.3.1 Photometers

A photometer measures the intensity of light from a source in a specific wavelength band. It typically uses

a single detector element and filters to isolate desired wavelengths.

28.3.2 Charge-Coupled Devices (CCDs) -

i

CCDs are widely used digital detectors that convert photons into electrons and then mto ar measunﬂa’le ,'
- ¥ =

voltage. They offer high quantum efficiency and the ability to create 2D images. The—number of elect‘rons
R\ {'9

R RN S
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generated in a pixel can be calculated as
Ne=F,AtQE

where
+ F, is the photon flux (photons s tm™2),
o A is the telescope collecting area (m2),
o tis the exposure time (s),

o QE is the quantum efficiency of the detector.

28.4 Plate Scale

28.4.1 Introduction

For small angles (where tan 6 ~ 6), the plate scale P for telescope is given by

=

where
« 0 is the angular size on sky (radians)
e s is the linear size in focal plane
o f is the telescope focal length

Since astronomers work with arcseconds and millimeters (or microns for pixels):

206265

P, arcsec/mm —
S

The constant 206,265 comes from:
. 180
1 radian = — x 3600 = 206264.8 arcseconds
s

For digital detectors like CCDs,
206265 X pum

Parcsec X T
/o T 1000
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where p,,, is the pixel size in micrometers.

28.4.2 Field of View

The total angular field covered by a detector is

FOVyiatn = N, - Ppx [arcseconds]

FOVheight = N, - Ppx [arcseconds]

where N, and N, are the number of pixels in each dimension.

28.5 Space-Based Instruments

Space-based instruments operate above Earth’s atmosphere to observe the universe with high precision.

o Atmospheric limitations: Earth’s atmosphere absorbs or distorts many wavelengths such as ul-

traviolet, X-ray, and infrared radiation.

o Improved resolution: absence of atmospheric turbulence allows sharper images and more stable

measurements.
o Instrument types: telescopes, spectrometers, particle detectors, and magnetometers.

o Constraints: high cost, limited repair opportunities, and finite operational lifetimes.

28.6 Signal-to-Noise Ratio

28.6.1 Introduction

Signal-to-Noise Ratio (SNR) is a measure of the quality of a signal in the presence of noise. It quantifies
how much the signal stands out from the background noise. High SNR means a clear signal, while low

SNR indicates that noise dominates.

SNR is defined as

S
SNR = —
N |
where . y ;'f?- v
« S is the signal strength (e.g., number of detected photons from the source)ps L~ "
g = ' ¥ W -
e N is the noise (e.g. standard deviation of the background). w PN
|| g I__. /:?r_- \'f J.’)
U4 O
| -~
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28.6.2 Pure Poisson Noise

\.

Definition. 28.1: Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a
number of events occurring in a fixed interval of time or space, given the average number of occur-
rences. It is commonly used to model random events like the number of phone calls received at a
call center, the number of accidents at an intersection, or the number of particles decaying per unit
time. The probability mass function of a Poisson distribution is given by

Aee=A
TR

P(X = k) k=0,1,2,...

where
e X is the random variable representing the number of events,
e \is the average number of occurrences in the given interval (also called the rate or intensity),
o k!is the factorial of k, i.e., k! = k(k —1)(k—2)...1.

The Poisson distribution is characterized by the mean and variance both being equal to A, i.e.,

7

For photon-counting detectors, the dominant noise is often Poisson. If the expected signal is S photons,

then Poisson statistics give

o=VS

Hence,

28.6.3 Background Noise

Suppose the measurement includes both the object signal S and the background B. The t
detected photons is

Stot:S+B
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Poisson statistics give total variance

0c’=S+DB

Hence,

SNR =

vS+ B

28.6.4 Readout Noise

A CCD or CMOS detector adds readout noise oyeaq per pixel. If np pixels are used, the read noise

contribution is

2 _ 2
Oread,tot — T'pixOread

The total variance becomes

0c’=S+B —|—npiX02

read

Hence,

S
SNR =
\/S + B + nPixo-l?ead
28.6.5 Complete Equation
S

where

SNR =

\/S + B + Npix (1 + npix) (Ns + Np + 07q + G?07)
np

np is the background pixels in the image, which correspond to regions with no object or light source.

N, represents the signal from the source, representing the number of photons from the object being

observed.

Np represents the dark noise, which arises from thermally generated electrons in the CCD detector,

even in the absence of light.

G is the gain of the CCD detector, which relates the number of electrons collected by the pixel to

the digital output recorded by the system.

oy is the fluctuations or Fano noise, which arises from the statistical natuﬁgﬁ%ﬂ,dg@tmhﬂ{gﬂ'wg/ I|I
% s o ___,.-:/f"

N3 o~ 'l
processes. Y
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