
Astronomy and Astrophysics Olympiad
(Theory and Data Analysis)

A Comprehensive Note Created by Former Hong Kong Team Members of IOAA

Team:

Lee Yiu Sing, Pika (Leader of Theory and Data Analysis Note)
Chan Ngo Wang, Owen (Leader of Observation Note)

December 31, 2025



Contents

I Theory

1 Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Basic Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Conic Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7.2 Buckingham Pi Theorem (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7.3 Natural Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8.1 Vector and Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8.2 Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.3 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.4 Scalar Field and Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.9 Differentiation and Partial Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9.2 Properties and Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9.3 Partial Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9.5 Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9.6 Taylor’s Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9.7 First Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



1.10 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.1 Primitive Function and Indefinite Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.10.2 Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.10.3 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.10.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.10.5 Multiple Integration, Line Integration and Surface Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.10.6 Trapezoidal Rule and Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.10.7 Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.11 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Spherical Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Law of Sine and Law of Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Astronomical Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Horizontal Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Equatorial Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Ecliptic Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Ecliptic Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Obliquity of the Ecliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Coordinate Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Galactic Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Galactic Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Galactic Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 North Galactic Pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.4 Coordinate Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Circumpolar Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Astronomical Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Apparent Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



4.1.3 Mean Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.4 Equation of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Sidereal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Sidereal Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Heliocentric Julian Date (HJD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Local Mean Time (LMT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Universal Time (UT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Time Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Different Definitions of a Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Basic Units in Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Fundamental Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Linear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.2 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Newton’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Linear Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.2 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.3 Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.4 Rocket Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Force, Torque and Equilibrium of Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Circular Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6.2 Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6.3 Centrifugal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.4 Coriolis Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6.5 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



6.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Orbital Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Newton’s Law of Universal Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.3 2-body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.4 n-body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.5 Binet’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Kepler’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 Three Kepler’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.2 Kepler’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.3 Poisson Bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Shell Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Gravitational Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4.1 Vis-viva Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.2 First Cosmic Speed, Second Cosmic Speed and Third Cosmic Speed . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4.3 Hohmann Transfer Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4.4 Blackhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.5 Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.6 Tully-Fisher Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Lagrange Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 Roche Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Postulates of Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Galileo Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Lorentz Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4 Spacetime Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5 Relativistic Kinematics and Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5.1 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5.2 Length Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



8.5.3 Relativistic Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.4 Relativistic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5.5 Relation between Relativistic Momentum and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Spacetime and Four Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6.1 Spacetime in Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6.2 Four-Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.6.3 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.6.4 Invariant Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.6.5 Important Four-Vectors in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.7 Introduction to General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.7.1 Operators in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.7.2 Introduction to Spacetime and Differentiable Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.7.3 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.7.4 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.7.5 Riemann Curvature Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.7.6 Einstein’s Field Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.7.7 Solution to Einstein’s Field Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.7.8 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.7.9 Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.7.10 Killing Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.7.11 Locally Measured Escape Speed in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.1 Kelvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.2 Pressure and Hydrostatic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3 Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.4 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.5 Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.6 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.7 Blackhole Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.8 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.8.1 Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



9.8.2 Boltzmann Distribution and Maxwell–Boltzmann Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.9 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.10 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.2 Spectral Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.3 Stefan–Boltzmann law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10.4 Doppler’s Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.1 Lorentz’s Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.2 Maxwell’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.3 Poynting Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.4 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.4.1 Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.4.2 Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.5 Diffraction and Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11.5.1 Principle of Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11.5.2 Complex Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11.5.3 Young’s Double-Slit Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11.5.4 Single-Slit Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11.5.5 Rayleigh’s Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11.6 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.6.2 Faraday’s Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.1 Atomic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.1.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



12.1.3 Nuclear Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.1.4 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.2 Wave-Particle Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.3 Planck’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.4 Bohr Model of the Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.4.1 Bohr Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.4.2 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.4.3 Wavefunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.4.4 Time-Independent Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.5 Rydberg Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

12.6 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

13 Stellar Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.1 Stellar Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.2 HR Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

13.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

13.2.2 Spectral Types and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

13.2.3 Turn-Off Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.3 Stellar Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.3.1 Stellar Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.3.2 Pre-Main Sequence Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.3.3 Main Sequence Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.3.4 Post-Main Sequence Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.3.5 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.3.6 Planetary Nebulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.3.7 End States of Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.4 Magnitude System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.5 Albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

13.6 Geometric Albedo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

13.7 Color Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

13.8 Atmospheric Extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



13.9 Optical Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.10 Binary Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.10.1 Different Types of Binary Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.10.2 Modified Kepler’s Third Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.10.3 Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.10.4 Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

13.10.5 Radial Velocity Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

13.10.6 Roche Lobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

13.11 Exoplanet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13.11.2 Classes of Exoplanets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13.11.3 Spectral Signatures of Possible Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13.11.4 Radial Velocity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13.11.5 Transit Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13.11.6 Habitable Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.1 Structure of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.1.1 Star Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.1.2 Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.2 Large-scale Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

14.3 Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

14.4 Rotational Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

14.5 Hubble’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14.6 Cosmological Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14.6.1 Proper Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14.6.2 Comoving Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

14.6.3 Luminosity Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

14.6.4 Angular Diameter Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.7 Friedmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.8 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



14.9 Big Bang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.9.1 Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.9.2 Cosmic Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.9.3 Expansion of Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.9.4 Phases of the Big Bang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

14.10 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.11 Gravitational Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.11.2 Derivation using Newtonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

14.11.3 Derivation using General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

14.12 Gravitational Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.12.2 Chirp Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.12.3 Binary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.13 Accretion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14.13.2 Eddington Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

14.14 Cosmic Distance Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

14.14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

14.14.2 Radar Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

14.14.3 Stellar Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

14.14.4 Standard Candles: Cepheid Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

14.14.5 Faber-Jackson Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

14.14.6 Type Ia Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

15 Interstellar Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15.2 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15.2.1 Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15.2.2 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

15.2.3 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

15.2.4 Continuity Equation and Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



15.2.5 Euler’s Equation (Special Case of Navier-Stokes Equation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

15.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

15.3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

16 Study of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

16.1 Tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

16.2 Seasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

16.3 Factors Influencing Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.4 Eclipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.4.1 Solar Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.4.2 Lunar Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.5 Space Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.5.2 Solar Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.5.3 Solar Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

16.5.4 Coronal Mass Ejections (CMEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.5.5 Aurorae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.6 Meteor Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.7 Equinoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.8 Solstices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.9 Solar Declination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17 Study of the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17.1 Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17.2 Nutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

17.3 Libration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

18 Study of the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

18.1 Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

18.1.1 Nebular Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233



18.1.2 Differentiation and Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

18.2 Structure and Components of the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

18.2.1 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

18.2.2 Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

18.2.3 Smaller Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

18.2.4 Kuiper Belt and Oort Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

19 Study of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

19.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

19.2 Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

19.3 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

19.4 Solar Surface Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

19.4.1 Sunspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

19.4.2 Solar Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

19.5 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

20 Human and Robotic Exploration within the Solar System . . . . . . . . . . . 242

20.1 Human Exploration of the Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

20.2 Planetary Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

II Data Analysis

21 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

21.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

22 Linear and Logarithmic Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

23 Measure of Central Tendancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246



24 Measure of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

24.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

24.2 Box Plots (Box-and-Whisker) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

25 Full Width at Half Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

26 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

27 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

27.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

27.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

27.1.2 Least Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

27.2 Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

III Observational Astronomy

28 Instrumentation and Space Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

28.1 Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

28.1.1 Type of Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

28.1.2 Mount Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28.1.3 Key Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28.1.4 Linear Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28.1.5 Angular Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28.1.6 Chromatic Aberration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

28.1.7 f -number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

28.1.8 Light-gathering Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

28.1.9 Adaptive Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

28.1.10 Artificial Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

28.2 Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

28.3 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

28.3.1 Photometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

28.3.2 Charge-Coupled Devices (CCDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



28.4 Plate Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

28.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

28.4.2 Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

28.5 Space-Based Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

28.6 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

28.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

28.6.2 Pure Poisson Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

28.6.3 Background Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

28.6.4 Readout Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

28.6.5 Complete Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



1 MATHEMATICAL PHYSICS By Pika and Owen

Part I: Theory

1 Mathematical Physics

1.1 Basic Set Theory

A set is any collection of distinct objects, considered as an object in its own right. The objects in a set

can be anything like real numbers R. We denote a set by curly braces:

A = {a1, a2, a3, . . . }

where a1, a2, a3, . . . are elements of the set A. We define several common operations on sets:

• Union: The union of two sets A and B is the set of all elements that are in either A or B (or both).

Denoted as:

A ∪B = {x | x ∈ A or x ∈ B}

• Intersection: The intersection of two sets A and B is the set of all elements that are in both A

and B. Denoted as:

A ∩B = {x | x ∈ A and x ∈ B}

• Difference: The difference of two sets A and B, denoted A \ B, is the set of all elements that are

in A but not in B:

A \B = {x | x ∈ A and x /∈ B}

• Complement: The complement of a set A, denoted Ac, is the set of all elements not in A.

Ac = {x | x /∈ A}

We say that a set A is a subset of a set B, denoted A ⊆ B, if every element of A is also an element of B:

A ⊆ B if ∀x (x ∈ A =⇒ x ∈ B)

where ∀ means for all. Conversely, B is a superset of A, denoted B ⊇ A, if every element of A is in B.
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1.2 Function

A function is a relationship between two sets, where each element of the first set (called the domain) is

associated with exactly one element of the second set (called the codomain). A function assigns a unique

output to every input from the domain. Formally, a function f from a set A to a set B is denoted as

f : A→ B

where A is the domain of the function, B is the codomain of the function. For each a ∈ A, there exists

a unique b ∈ B such that f(a) = b. There are several important types of functions that are commonly

used in mathematics. Below are some of the most important ones:

• A function f : A → B is called one-to-one or injective if distinct elements in the domain A map

to distinct elements in the codomain B. In other words:

f(x1) = f(x2) =⇒ x1 = x2 for all x1, x2 ∈ A

• A function f : A → B is called onto or surjective if for every element b ∈ B, there exists at least

one element a ∈ A such that f(a) = b. In other words, the range of f is the entire codomain B.

• A function f : A → B is called bijective if it is both injective (one-to-one) and surjective (onto).

This means that every element of the domain is mapped to a unique element in the codomain, and

every element of the codomain has a corresponding element in the domain.

1.3 Trigonometry

Definition. 1.1: Trigonometric Function

Consider a right triangle with an angle θ, opposite side O, adjacent side A, and hypotenuse H.

Recall that

A B

C

Adjacent A

Opposite O
Hypotenuse H

θ
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For the angle θ in a right triangle:

sin θ = Opposite
Hypotenuse =

O

H
, csc θ = H

O

cos θ = Adjacent
Hypotenuse =

A

H
, sec θ = H

A

tan θ = Opposite
Adjacent =

O

A
, cot θ = A

O

Definition. 1.2: Degree

Degrees are often divided into smaller units for more precise measurements. The most common

smaller units are minutes and seconds:

• 1 degree (◦) = 60 minutes (’)

• 1 minute (’) = 60 seconds (”)

Definition. 1.3: Radian

A radian is defined as the angle subtended at the center of a circle by an arc whose length is equal

to the radius of the circle:

θ =
s

r

where

• θ is the angle in radians,

• s is the length of the arc, and

• r is the radius of the circle.

Radians are closely related to degrees, but they are more natural for mathematical calculations. The

relationship between radians and degrees is given by the following conversion formulas:

θdegrees = θradians ×
180

π

θradians = θdegrees ×
π

180
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1.4 Logarithm

Recall that

logb x = y ⇐⇒ by = x

Definition. 1.4: Natural Number e

e = lim
n→∞

(
1 +

1

n

)n

which is
(
1 +

1

n

)n

when n→ ∞.

Define natural logarithm loge x by ln. Note that

1. ln(xy) = lnx+ ln y

2. ln
(
x

y

)
= lnx− ln y

3. ln(xn) = n lnx

1.5 Summation

The summation symbol
∑

is used to denote the sum of a sequence of numbers:

n∑
i=1

ai = a1 + a2 + · · ·+ an

Einstein summation notation is a compact and powerful way to write sums over indexed quantities in

tensor calculus. Instead of writing explicit summation signs, repeated indices in a term imply a sum over

all values of that index. If an index appears twice in a single term (once as an upper index and once as

a lower index, or in the same position in Euclidean space), it is implicitly summed over all its possible

values:

AiBi ≡
n∑

i=1

AiBi

Example. For two vectors u, v ∈ R3, the dot product can be written using Einstein notation as:

u · v = uivi =
3∑

i=1

uivi

Page 18 / 259



1 MATHEMATICAL PHYSICS By Pika and Owen

1.6 Conic Section

A conic section is the curve obtained by intersecting a plane with a double-napped cone. The general

form of the equation of a conic section in Cartesian coordinates is

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

where A, B, C, D, E, and F are constants that define the shape and orientation of the conic.

Conic Section Equation and Properties

Circle Equation: (x− h)2 + (y − k)2 = r2

Center: (h, k)

Radius: r

Ellipse Equation: (x− h)2

a2
+

(y − k)2

b2
= 1

Center: (h, k)

Semi-major axis: a, Semi-minor axis: b

Orientation: If a > b, major axis along x-axis; if b > a, major axis along y-axis

Parabola Equation: y − k = a(x− h)2

Vertex: (h, k)

Axis: Vertical

Hyperbola Equation: (x− h)2

a2
− (y − k)2

b2
= 1

Center: (h, k)

Transverse axis along x-axis, Conjugate axis along y-axis

Table 1: Different Conic Sections and Their Properties

1.7 Dimensional Analysis

1.7.1 Introduction

Dimensional analysis is used to
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• check the consistency of equations, and

• predict how different physical quantities relate to one another.

In essence, it is based on the idea that any physical quantity can be expressed in terms of a few fundamental

dimensions, such as:

[M ] (mass), [L] (length), [T ] (time), [I] (electric current), [Θ] (temperature)

Every valid physical equation must be dimensionally homogeneous, meaning all additive terms must

have the same dimensions.

Consider Newton’s second law:

F = ma

The dimensions are:

[F ] = [MLT−2], [m] = [M ], [a] = [LT−2]

Since [F ] = [m][a], the equation is dimensionally consistent.

1.7.2 Buckingham Pi Theorem (Optional)

Given a physical relation described by:

f(Q1, Q2, . . . , Qn) = 0

where Qi are the n physical variables, and these n variables involve k independent fundamental dimensions,

the equation can be rewritten as a function of (n− k) independent dimensionless Π groups:

F (Π1,Π2, . . . ,Πn−k) = 0

Each Π group is a dimensionless product of the original variables raised to some powers:

Π = Qa
1Q

b
2Q

c
3 . . .

Example. Find the dimensionless relation for the drag force FD on a sphere in a fluid, considering

diameter D, fluid velocity V , fluid density ρ, g, and fluid dynamic viscosity µ with dimension [ML−1T−1].

Solution. Note that n = 6 and k = 3 so number of pi terms p = 3 so we expect 3 dimensionless groups.
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Choose Repeating Variables (k = 3): D, V and ρ (which are dimensionally independent and cover M , L

and T ). Then

Π1 = FD ·DaV bρc

Solving,

Π1 =
FD

ρV 2D2

This is related to the drag coefficient CD.

Π2 = µ ·DaV bρc

Solving,

Π2 =
µ

ρV D
= Re

where Re is the Reynolds number.

Π3 = g ·DaV bρc

Solving,

Π3 =
gD

V 2

This is the inverse of the Froude number (Fr) squared.

F (CD,Re,Fr) = 0 =⇒ CD = f(Re,Fr)

1.7.3 Natural Unit

In physics, natural units are systems of units in which certain fundamental physical constants are set equal

to 1. The most commonly used ones set the following fundamental constants to 1:

• h̄ (The reduced Planck’s constant)

• c (The speed of light in vacuum)

• G (The gravitational constant)

• kB (Boltzmann constant)

• ϵ0 (The permittivity of free space)
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Dimensional analysis is used to restore the correct physical dimensions of quantities when transitioning

between different unit systems.

Example. In natural units, the famous equation of mass-energy equivalence is given by

E = m

where E is energy and m is mass. However, in standard units, energy and mass have different dimensions.

Energy is measured in joules (J) with the dimensions [ML2T−2], while mass is measured in kilograms (kg)

with the dimension [M ].

Using dimensional analysis, we restore the correct relationship by introducing the speed of light c. The

energy and mass are related by the equation:

E = mc2

Here, c (speed of light) has the dimension of [LT−1]. Now the dimensions of both sides match because

[E] = [ML2T−2], [mc2] = [M ][L2T−2]

Hence, the restored equation in standard units is

E = mc2

1.7.4 Exercise

The Planck unit system includes the following fundamental quantities: Planck Length (lP ), Planck Time

(tP ), Planck Mass (mP ), Planck Charge (qP ), Planck Temperature (TP ), Planck Energy (EP ), Planck

Force (FP ) and Planck Power (PP ). Each of these units is derived from combinations of the fundamental

constants:

• The speed of light (c)

• The gravitational constant (G, with [G] = [M−1L3T−2])

• Planck’s constant (h̄ = h/2π, with [h] = [ML2T−1])

• Coulomb constant (ϵ0. with [ϵ] = [ML3T−4I−2])

• Boltzmann constant (kB, with [ML2T−2Θ−1])
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Derive each of the quantities above.

1.8 Tensor

1.8.1 Vector and Vector Space

Definition. 1.5: Vector

A vector (denoted by an arrow above the letter (A) or by a boldface letter (A)) is a mathematical

object that has both a magnitude (denoted by |A| or A) (size or length) and a direction. This is in

contrast to a scalar, which only has magnitude (e.g., temperature, mass).

Definition. 1.6: Unit Vector

A unit vector (û) has a magnitude of 1 and defines direction. The standard Cartesian unit vectors

are i, j, k along the x, y, and z axes, respectively. A vector A in 3D space can be expressed in terms

of its Cartesian components (Ax, Ay, Az):

A = Axi + Ayj + Azk.

Theorem. 1.1: Tail-to-tail Method
The sum of two vectors can be visualized as the diagonal of a parallelogram formed by the two

vectors placed tail-to-tail:

A

B
A + B

O

Definition. 1.7: Dot Product

Given that angle between two vectors is θ. If A = (Ax, Ay, Az) and B = (Bx, By, Bz), then

A · B = |A||B| cos(θ) = AxBx + AyBy + AzBz
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Theorem. 1.2: Projection

The projection of a onto b is given by the following formula:

projba =
a · b
|b|2 b

Example. The effective area Aeff of a surface can be defined as the projection of the surface area in the

direction of a particular vector. If A is a vector representing the surface area and v̂ is a unit vector in the

direction of interest, the effective area is given by the dot product:

Aeff = A · v̂

where

• A is the vector representing the surface area (with magnitude representing the area and direction

perpendicular to the surface),

• v̂ is the unit vector in the direction of interest, and

• Aeff is the projection of the area in the direction of v̂.

Definition. 1.8: Cross Product

Given that angle between two vectors is θ. If A = (Ax, Ay, Az) and B = (Bx, By, Bz), then the

component form of cross product is given by

A × B =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
= (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

and the vector form of cross product is given by

A × B = |A||B| sin(θ)n̂

where n̂ is a unit vector perpendicular to the plane formed by a and b, and its direction is given by

the right-hand rule.
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Example. Given two vectors a and b, which form two sides of a triangle, the area A of the triangle is

half the magnitude of the cross product of a and b. Mathematically, the area is given by

A =
1

2
|a × b|

Definition. 1.9: Vector Space

A vector space V over a field F (e.g., R or C) is a set of vectors equipped with two operations:

• Vector addition: + : V × V → V

• Scalar multiplication: · : F× V → V

satisfying the following axioms for all u, v,w ∈ V and scalars α, β ∈ F:

• Associativity of addition: (u + v) + w = u + (v + w)

• Commutativity of addition: u + v = v + u

• Existence of zero vector: There exists 0 ∈ V such that v + 0 = v

• Existence of additive inverse: For each v ∈ V , there exists −v ∈ V such that v+(−v) = 0

• Compatibility of scalar multiplication: α(βv) = (αβ)v

• Identity element of scalar multiplication: 1 · v = v

• Distributivity over vector addition: α(u + v) = αu + αv

• Distributivity over scalar addition: (α + β)v = αv + βv

1.8.2 Matrix

Definition A matrix is an ordered rectangular array of numbers arranged in m rows and n columns.

A matrix is typically denoted as A, and its elements are written as aij, where i is the row index and j is
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the column index.

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

... ... . . . ...

am1 am2 · · · amn


Here, A is an m× n matrix (with m rows and n columns).

Matrix Multiplication Matrix multiplication is defined as the dot product of rows of the first matrix

with columns of the second matrix. If A is an m× n matrix and B is an n× p matrix, then their product

C = AB is an m× p matrix, and its elements are given by

Cij =
n∑

k=1

aikbkj

Scalar Multiplication A matrix A can be multiplied by a scalar λ (a number), which scales all the

elements of the matrix:

λA =



λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n

... ... . . . ...

λam1 λam2 · · · λamn


Determinant of a Matrix For a 2× 2 matrix

A =

a b

c d


the determinant is computed as

det(A) = ad− bc
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For larger matrices, the determinant can be computed using cofactor expansion. The determinant of an

n× n matrix A is given by

det(A) =
n∑

j=1

(−1)i+jaij det(Aij)

where Aij is the matrix obtained by removing the i-th row and j-th column of A, and aij is the element

in the i-th row and j-th column.

Inverse of a Matrix

Definition. 1.10: Minor, Cofactor and Adjoint

Let A = (aij) be an n × n matrix. The minor Mij of the entry aij is the determinant of the

(n− 1)× (n− 1) matrix obtained by deleting the i-th row and j-th column of A.

The cofactor Cij of aij is defined by

Cij = (−1)i+jMij

Let A be an n× n matrix.

The adjoint (or adjugate) of A, denoted by adj(A), is given by

adj(A) = (Cji)1≤i,j≤n

Definition. 1.11: Inverse Matrix

Let A be an n× n matrix. A matrix B is called the inverse of A if

AB = BA = In

where In =



1 0 · · · 0

0 1 · · · 0

... ... . . . ...

0 0 · · · 1


is a n × n matrix. If such a matrix exists, A is called invertible and

the inverse is denoted by A−1.
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Theorem. 1.3: Existence of the Inverse

An n× n matrix A is invertible if and only if detA 6= 0.

Theorem. 1.4: Inverse via the Adjoint

If A is an n× n matrix with detA 6= 0, then

A−1 =
1

detA adj(A)

1.8.3 Tensor

Basis For a vector space V , a set of vectors {b1, b2, . . . , bn} is a basis of V if

• Linear Independence: No vector in the set can be written as a linear combination of the others.

• Spanning: Every vector in V can be expressed as a linear combination of the basis vectors.

Example.

B =

e1 =

1

0

 , e2 =

0

1




is a basis for R2 because the vectors are linearly independent, and any vector v =

x
y

 ∈ R2 can be

written as

v = xe1 + ye2

Change of Basis Let V be a vector space, and let B = {b1, b2, . . . , bn} be a basis for V . A vector v ∈ V

can be written as a linear combination of the basis vectors:

v = c1b1 + c2b2 + · · ·+ cnbn

where c1, c2, . . . , cn are the coordinates of v with respect to the basis B. These coordinates {c1, c2, . . . , cn}

form the coordinate vector [v]B of v in the basis B.

Consider two bases:

B = {b1, b2, . . . , bn}
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and

B′ = {b′
1, b′

2, . . . , b′
n}

Let v be a vector in V . The goal is to express the coordinate vector [v]B of v with respect to the new

basis B′. To do this, we need to find the relationship between the two coordinate systems. Suppose the

new basis vectors b′
i are expressed as linear combinations of the old basis vectors bi:

b′
i =

n∑
j=1

Pijbj

where P = [Pij] is the change of basis matrix that transforms the old basis B to the new basis B′.

Then, if v has coordinates [v]B =



c1

c2

...

cn


in the basis B, its coordinates [v]B′ in the new basis B′ can be

computed as:

[v]B′ = P−1[v]B

where P−1 is the inverse of the change of basis matrix.

Tensor A tensor is a mathematical object that generalizes scalars, vectors, and matrices. It can be

thought of as a multi-dimensional array of numbers that transforms according to certain rules under a

change of coordinates.

The order (or rank) of a tensor refers to the number of indices needed to describe it:

• A scalar is a tensor of order 0.

• A vector is a tensor of order 1.

• A matrix is a tensor of order 2.

• A general tensor may have order 3, 4, or higher, depending on the number of indices.

The components of a tensor are typically denoted with indices. For example, a second-order tensor T with

components Tij can be written as:

T =

T11 T12

T21 T22


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Contravariant Tensor A contravariant tensor has components that transform in a certain way when

we change the coordinates. Specifically, the components of a contravariant tensor transform according to

the inverse of the transformation matrix. Let T be a contravariant vector. When we change coordinates,

the components T i transform as:

T ′i =
∑
j

Ai
jT

j

where Ai
j is the transformation matrix for the new coordinates. In index notation, the upper index

(superscript) indicates that the tensor is contravariant.

For example, consider a contravariant vector v = (v1, v2). Under a change of coordinates, the components

transform as

v′1 = A1
1v

1 + A1
2v

2, v′2 = A2
1v

1 + A2
2v

2

Covariant Tensor In contrast, a covariant tensor has components that transform differently. The

components of a covariant tensor transform according to the transformation matrix itself. Let S be a

covariant vector. Under a change of coordinates, the components Si transform as

S ′
i =

∑
j

Aj
iSj

where Aj
i is the transformation matrix for the new coordinates. In index notation, the lower index (sub-

script) indicates that the tensor is covariant. For example, consider a covariant vector w = (w1, w2). Under

a change of coordinates, the components transform as

w′
1 = A1

1w1 + A2
1w2, w′

2 = A1
2w1 + A2

2w2

1.8.4 Scalar Field and Vector Field

Definition. 1.12: Scalar Field

A scalar field is a mathematical function that assigns a scalar value to every point in a space. It

is represented as

ϕ : Rn → R, x 7→ ϕ(x)

where Rn is the space in which the field is defined, and ϕ(x) is a scalar value at the point x.

Example. The temperature at every point in a room is a scalar field. If T (x) gives the temperature at

point x, then T is a scalar field.
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Definition. 1.13: Vector Field

A vector field is a function that assigns a vector to every point in a space. It is represented as

V : Rn → Rn, x 7→ V(x)

where V(x) is the vector field at point x, and Rn is the space in which the vector field is defined.

Exercise. (2020 GeCAA)

In the following problem, the fluid mechanics of Jupiter’s Great Red Spot (GRS) is studied based on the

velocity field data. The diagram above shows a map of relative velocity for GRS and the surrounding

region. The arrows are oriented and scaled as per the directions and magnitudes of winds at different

points. Due to the combined effects of gravity and rotation, Jupiter is slightly flattened at its poles. The

equation of a spheroid approximating for the shape of Jupiter can be stated as:

x2

R2
e

+
y2

R2
p

= 1

where Re = 7.15× 107m is the equatorial radius of Jupiter, and Rp = 6.69× 107m the polar radius. The

radii of curvature of this spheroid in any direction can be calculated by the following equations (ϵ = Re

Rp

):

r(ϕ) = Re(1 + ϵ2 tan2 ϕ)1/2

R(ϕ) = Reϵ
2

(
r(ϕ)

Re cosϕ

)3
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where r(ϕ) and R(ϕ) are the zonal (aka the zone of a particular latitude) and meridional (aka longitudinal)

radii of curvature, respectively, as a function of planetographic latitude ϕ. The sidereal rotation period of

Jupiter is P = 3.57× 104 s.

(a) Calculate the zonal and meridional radii values (r̄ and R̄) respectively at the location of the centre

of the GRS.

(b) Estimate the eccentricity of the GRS.

(c) ’Vorticity’ at any point is a measure of local spinning of the fluid as measured by an observer situated

in the reference frame of the fluid. Mathematically, it is calculated as ’curl’ (vector derivative

product) of the velocity field. In this case, the average relative vorticity may be estimated by the

equation:

ζ =
Vv

LGRSAGRS

where Vv is the maximum value of winds as per the velocity field, LGRS is the length of the circum-

ference of the GRS and AGRS is the area of the GRS. Estimate average relative vorticity of the GRS.

Hint: The circumference of an ellipse is well approximated by an average of circumferences of the

corresponding auxiliary and minor circles.

(d) Find the absolute vorticity ζa = (ζ + f) by adding the Coriolis parameter:

f = 2Ω sinϕ

where Ω is the angular velocity of Jupiter (due to axial rotation) and ϕ is the appropriate latitude.

(e) If the absolute vorticity has the same sign as the latitude, we call the storm a ’cyclonic storm’. If

they have opposite signs, the system is ’anticyclonic’. Is the GRS cyclonic or anticyclonic?

(f) Imagine that the GRS moves to another latitude ϕ1, where the absolute vorticity changes the sign

(changes from anti-cyclonic to cyclonic or vice versa). Assuming minimum possible displacement of

the GRS, at what value of ϕ1 do we expect this change?

In your analysis, assume that the GRS at the new location would occupy the same angular span in

latitude, as well as have the same wind velocities and eccentricity as the original.
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1.9 Differentiation and Partial Differentiation

1.9.1 Introduction

Differentiation is used for functions of a single independent variable, y = f(x). It measures the instaneous

rate of change of y with respect to x. The derivative of a function f(x) with respect to x is defined using

a limit and is denoted by df

dx
or f ′(x).

df

dx
= lim

∆x→0

f(x+∆x)− f(x)

∆x
(First principle)

x

y

(x, f(x))

(x+∆x, f(x+∆x))

slope =
∆y

∆x

Figure 1: Differentiation is the slope when ∆x→ 0

1.9.2 Properties and Formula

Definition. 1.14: Basic Properties

If f(x) and g(x) are differentiable functions (the derivative exists), c and n are any real numbers,

(cf)′ = cf ′(x)

(f ± g)′ = f ′(x)± g′(x)

(fg)′ = f ′g + fg′ (Product Rule)(
f

g

)′

=
f ′g − fg′

g2
(Quotient Rule)

d

dx
(c) = 0

d

dx
(xn) = nxn−1 (Power Rule)

d

dx
(f(g(x))) = f ′(g(x))g′(x) (Chain Rule)
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Definition. 1.15: Formulas
d

dx
(x) = 1

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

d

dx
(tanx) = sec2 x

d

dx
(secx) = secx tanx

d

dx
(cscx) = − cscx cotx

d

dx
(cotx) = − csc2 x

d

dx
(sin−1 x) =

1√
1− x2

d

dx
(cos−1 x) = − 1√

1− x2

d

dx
(tan−1 x) =

1

1 + x2

d

dx
(ax) = ax ln(a), a > 0

d

dx
(ex) = ex

d

dx
(ln(x)) = 1

x
, x > 0

d

dx
(ln |x|) = 1

x
, x 6= 0

d

dx
(loga(x)) =

1

x ln a, x > 0

1.9.3 Partial Differentiation

Partial differentiation is used for functions of two or more independent variables, such as z = f(x, y).

A partial derivative measures the rate of change of the function with respect to one variable, while

holding all other variables constant. For example, ∂z
∂x

is the derivative with respect to x while

keeping y constant.

Example. Consider the function

f(x, y) = x2y + exy

∂

∂x

(
x2y + exy

)
= 2xy + yexy

1.9.4 Numerical Analysis

Definition. 1.16: Bisection Method

Let the function f(x) be continuous on the interval [a, b], and suppose that f(a) and f(b) have

opposite signs, i.e.,

f(a) · f(b) < 0

The root r lies between a and b, and we can approximate the root by iteratively halving the interval.

The midpoint m of the interval is given by

m =
a+ b

2

We then check the sign of f(m):
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• If f(m) = 0, then m is the root.

• If f(a) · f(m) < 0, the root lies between a and m, so we set b = m.

• If f(m) · f(b) < 0, the root lies between m and b, so we set a = m.

This process is repeated until the interval becomes sufficiently small.

Example. To find the root of f(x) = x2 − 2 on the interval [1, 2]:

• f(1) = 12 − 2 = −1

• f(2) = 22 − 2 = 2

• Since f(1) · f(2) < 0, the root lies in [1, 2].

• First approximation: m1 =
1 + 2

2
= 1.5.

• f(1.5) = 1.52 − 2 = 0.25. Since f(1) · f(1.5) < 0, the new interval is [1, 1.5].

Definition. 1.17: Newton–Raphson method

Let f(x) be a differentiable function, and let x0 be an initial guess for the root. The next approxi-

mation x1 is given by

x1 = x0 −
f(x0)

f ′(x0)

The method continues iteratively:

xn+1 = xn −
f(xn)

f ′(xn)

Example. To solve f(x) = x2 − 2 = 0, we find the derivative f ′(x) = 2x. Using an initial guess x0 = 1.5:

x1 = x0 −
x20 − 2

2x0

x1 = 1.5− 1.52 − 2

2(1.5)
≈ 1.4167
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1.9.5 Linear Approximation

To find the linear approximation, we begin by recalling the definition of the tangent line to a curve at a

point. The equation of the tangent line at x = a is

y = f ′(a)(x− a) + f(a)

which provides the best linear approximation to the function near x = a:

f(x) ≈ f(a) + f ′(a)(x− a)

Example. sinx ≈ x for small x in radian.

1.9.6 Taylor’s Series

The Taylor Series of a function f(x) about a point a is given by

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·

where f (n)(x) is the n-th derivative of f(x).

Example. Consider the function f(x) = ex. The derivatives of ex are

f ′(x) = ex, f ′′(x) = ex, f (3)(x) = ex, . . .

Evaluating these at x = 0, we get

f(0) = 1, f ′(0) = 1, f ′′(0) = 1, f (n)(0) = 1 for all n

Hence, the Taylor series of ex around x = 0 (also known as the Maclaurin series) is

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . .
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1.9.7 First Derivative Test

Definition. 1.18: Critical Point

Let f(x) be a function that is differentiable on an interval containing c, except possibly at c itself.

Critical points of f are points c where either f ′(c) = 0 or f ′(c) does not exist.

Theorem. 1.5: First Derivative Test

Suppose c is a critical point of a function f .

• If f ′(x) > 0 for x < c and f ′(x) < 0 for x > c, then f has a local maximum at c.

• If f ′(x) < 0 for x < c and f ′(x) > 0 for x > c, then f has a local minimum at c.

• If f ′(x) has the same sign on both sides of c, then f has no local extremum at c.

Example. (2025 IOAA) The Event Horizon Telescope (EHT) has released an image of the supermassive

black hole at the centre of the M87 galaxy, as shown in the left panel of Fig. 2. To understand some simple

features of this image, we consider a simplified model of a non-rotating, static, spherically symmetric black

hole of mass

M = 6.5× 109M⊙

surrounded by a massless, thin, planar accretion disk of inner and outer radii

ainner = 6RSC, aouter = 10RSC

respectively, where RSC is the Schwarzschild radius. A face-on view sketch of this system is shown in the

right panel of Fig. 2. (The figure is not to scale.)

Figure 2: Left: EHT image of the black hole at the centre of M87. Right: Face-on schematic diagram of
a black hole surrounded by a thin accretion disk.
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We assume that the accretion disk is the only source of light to be considered. Every point on the disk

emits light in all directions. This light travels under the influence of the gravitational field of the black

hole. The path of the light rays is governed by the following two equations (which are similar to those

describing the motion of an object around the Sun):

1

2
v2r +

L2

2r2

(
1− 2GM

c2r

)
= E (1)

vϕ = rω =
L

r
(2)

where r ∈ (RSC,∞) is the radial coordinate, ϕ ∈ [0, 2π) is the azimuthal angle, and E and L are constants

related to the conserved energy and conserved angular momentum, respectively. Here, vr =
dr

dt
is the

magnitude of the radial velocity, vϕ is the magnitude of the tangential velocity, and ω =
dϕ

dt
is the angular

velocity. We define the impact parameter b for a trajectory as

b =
L√
2E

Time dilation effects are neglected in this problem. Another useful equation is obtained by differentiating

the first equation with respect to time:

dvr
dt

− L2

r3
+

3GML2

c2r4
= 0 (3)

(a) Circular light trajectories can exist around the black hole. Find the radius rph and the impact

parameter bph for such photon trajectories in terms of M and relevant constants.

(b) Calculate the time Tph taken to complete one full orbit of the circular light trajectory, in seconds.

(c) The radial velocity equation for light trajectories can be compared with an equation of the form

v2r
2

+ Veff(r) = E (4)

A schematic plot of Veff/L
2 as a function of r is shown in the following figure. The plot indicates two

special radii, rα and rβ. Obtain expressions for rα and rβ in terms of M and relevant constants.
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1.10 Integration

1.10.1 Primitive Function and Indefinite Integration

The primitive function (or antiderivative) of a given function f(x) is a function F (x) such that

F ′(x) = f(x)

Example. Let f(x) = 2x. The corresponding primitive function F (x) is

F (x) = x2 + C

where C is a constant, called the constant of integration. This constant appears because the derivative of

any constant is zero, and thus there are infinitely many functions that differ only by a constant.

The indefinite integral of a function f(x) is the operation of finding its primitive function. It is written

as ˆ
f(x) dx = F (x) + C

Some important properties of indefinite integrals include

Theorem. 1.6: Properties

• Linearity: ˆ
(f(x) + g(x)) dx =

ˆ
f(x) dx+

ˆ
g(x) dx

• Constant factor: ˆ
cf(x) dx = c

ˆ
f(x) dx

where c is a constant.
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Theorem. 1.7: Basic Primitive Function
• Power Rule: ˆ

xn dx =
xn+1

n+ 1
+ C for n 6= −1

• Exponential Functions: ˆ
ex dx = ex + C

• Trigonometric Functions:

ˆ
sin(x) dx = − cos(x) + C

ˆ
cos(x) dx = sin(x) + C

1.10.2 Definite Integral

Definition. 1.19: Riemann Sum

Let f(x) be a function defined on the interval [a, b], and let the interval be divided into n subintervals:

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn]

where x0 = a and xn = b, and the partition points

x0, x1, . . . , xn

are chosen such that a = x0 < x1 < · · · < xn = b. The Riemann sum is defined as

Sn =
n∑

i=1

f(x∗i )∆xi

where:

• x∗i is a sample point chosen from the i-th subinterval [xi−1, xi],

• ∆xi = xi − xi−1 is the width of the i-th subinterval.

There are several ways to choose the sample points x∗i in each subinterval, which leads to different

types of Riemann sums:
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• Left Riemann Sum: x∗i = xi−1, the left endpoint of each subinterval.

• Right Riemann Sum: x∗i = xi, the right endpoint of each subinterval.

• Midpoint Riemann Sum: x∗i =
xi−1 + xi

2
, the midpoint of each subinterval.

Definition. 1.20: Definite Integral

The definite integral is defined as the limit of the Riemann sum as the number of subintervals n→ ∞

and the maximum subinterval width ∆xi → 0:

ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆xi

The definite integral can be interpreted as the signed area under the curve y = f(x) from x = a to

x = b. If f(x) is above the x-axis, the area is positive, and if f(x) is below the x-axis, the area is

negative.

Theorem. 1.8: Fundamental Theorem of Calculus

Alternatively, the definite integral can be computed using the Fundamental Theorem of Calculus:

ˆ b

a

f(x) dx = F (b)− F (a)

where F (x) is any antiderivative of f(x).

x

y

a b

Figure 3: Signed area under the curve y = f(x) from x = a to x = b is given by
ˆ b

a

f(x) dx.

Some important properties of definite integrals include
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Definition. 1.21: Properties

• Linearity: ˆ b

a

(c1f(x) + c2g(x)) dx = c1

ˆ b

a

f(x) dx+ c2

ˆ b

a

g(x) dx

where c1 and c2 are constants.

• Additivity: ˆ b

a

f(x) dx =

ˆ c

a

f(x) dx+

ˆ b

c

f(x) dx

for any point c between a and b.

• Reversal of Limits: ˆ b

a

f(x) dx = −
ˆ a

b

f(x) dx

Reversing the limits of integration changes the sign of the integral.

• Zero Width Integral: ˆ a

a

f(x) dx = 0

The integral over a single point is always zero.

1.10.3 Integration by Substitution

Theorem. 1.9: Integration by Substitution in Indefinite Integral

Suppose we have the following indefinite integral:

ˆ
f(g(x)) · g′(x) dx

We can use substitution by letting u = g(x), so that du = g′(x) dx. This changes the integral into

ˆ
f(u) du

Now, we can integrate with respect to u and then substitute back in terms of x.

Example. Consider the integral ˆ
xex

2

dx
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Let

u = x2, du = 2x dx

Hence, the integral becomes
1

2

ˆ
eu du =

1

2
eu + C =

1

2
ex

2

+ C

Theorem. 1.10: Integration by Substitution in Definite Integral

For definite integrals, the limits of integration change according to the substitution. Suppose we

have ˆ b

a

f(g(x)) · g′(x) dx

Let u = g(x), then the limits of integration transform as follows:

u(a) = g(a) and u(b) = g(b)

The integral becomes ˆ g(b)

g(a)

f(u) du

We can now evaluate the definite integral in terms of u.

1.10.4 Integration by Parts

Theorem. 1.11: Integration by Part in Definite Integral
ˆ
u(x)v′(x) dx = u(x)v(x)−

ˆ
v(x)u′(x) dx

where u(x) is chosen to simplify u′(x) and v′(x) is easily integrable.

Proof. Integration by parts is based on the product rule for differentiation:

d

dx
[u(x)v(x)] = u′(x)v(x) + u(x)v′(x)

Rewriting and integrating both sides gives the formula for integration by parts:

ˆ
u(x)v′(x) dx = u(x)v(x)−

ˆ
v(x)u′(x) dx
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Example. Evaluate the integral ˆ
xex dx

Let u = x, so that du = dx, and let dv = ex dx, so that v = ex. Using the integration by parts formula:

ˆ
xex dx = xex −

ˆ
ex dx = xex − ex + C

Theorem. 1.12: Integration by Part in Indefinite Integral

To solve an integral using integration by parts, we choose u and dv from the integrand. Differentiating

u gives du, and integrating dv gives v. Substituting into the formula, we obtain:

ˆ
u dv = uv −

ˆ
v du

1.10.5 Multiple Integration, Line Integration and Surface Integration

Definition. 1.22: n-dimensional Integration

In n dimensions, the integral of a function f : Rn → R over a region D ⊂ Rn is given by

ˆ
D

f(x) dx =

ˆ b1

x1=a1

ˆ b2

x2=a2

· · ·
ˆ bn

xn=an

f(x1, x2, . . . , xn) dxn . . . dx2 dx1

Example. the 2-dimensional integral of a function f(x, y) over a rectangle [a1, b1]× [a2, b2] is

ˆ b1

a1

ˆ b2

a2

f(x, y) dy dx

Definition. 1.23: Line Integration

A line integral is an integral of a function along a curve or path. Let r(t) = (x(t), y(t), z(t)) be

a parametrization of the curve C, with t ranging from a to b. Then, the line integral of a scalar

function f along C is given by

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(x(t), y(t), z(t))

∣∣∣∣drdt
∣∣∣∣ dt
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If the integrand involves a vector field F = (F1, F2, F3), the line integral becomes

ˆ
C

F · dr =

ˆ b

a

(
F1(x(t), y(t), z(t))

dx

dt
+ F2(x(t), y(t), z(t))

dy

dt
+ F3(x(t), y(t), z(t))

dz

dt

)
dt

Definition. 1.24: Surface Integration

A surface integral involves integrating over a surface S. The surface integral of a scalar function

f(x, y, z) over a surface S is

ˆ
S

f(x, y, z) dS =

¨
D

f(x(u, v), y(u, v), z(u, v))

∣∣∣∣∂(x, y, z)∂(u, v)

∣∣∣∣ du dv
where (x(u, v), y(u, v), z(u, v)) is the parametrization of the surface, and the determinant term is the

Jacobian of the transformation from the (u, v) parameter space to the (x, y, z) space.

For a vector field F = (F1, F2, F3), the surface integral becomes

ˆ
S

F · dS =

¨
D

F(x(u, v), y(u, v), z(u, v)) · n(u, v)
∣∣∣∣∂(x, y, z)∂(u, v)

∣∣∣∣ du dv
where n(u, v) is the unit normal vector to the surface at each point.

1.10.6 Trapezoidal Rule and Simpson’s Rule

For more complex functions where integration is difficult, numerical methods such as the Trapezoidal Rule

can be used.

Theorem. 1.13: Trapezoidal Rule

Let f be a continuous function on [a, b]. Partition the interval into n equal subintervals of width

h =
b− a

n

and define the partition points by xi = a+ ih for i = 0, 1, . . . , n.

The Trapezoidal Rule approximates the definite integral

ˆ b

a

f(x) dx
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by ˆ b

a

f(x) dx ≈ h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
This method corresponds to approximating the graph of f on each subinterval by a straight line and

summing the areas of the resulting trapezoids.

Another more accurate numerical approximation is Simpson’s Rule, which approximates the area under

the curve by fitting parabolas to segments of the curve.

Theorem. 1.14: Simpson’s Rule

Let f be a continuous function on [a, b], and suppose that n is an even positive integer. With

h =
b− a

n
and partition points xi = a+ ih, Simpson’s Rule approximates

ˆ b

a

f(x) dx

by
ˆ b

a

f(x) dx ≈ h

3

f(a) + 4
n−1∑
i=1
i odd

f(xi) + 2
n−2∑
i=2

i even

f(xi) + f(b)


This method is derived by approximating f on each pair of subintervals using a parabola, resulting

in significantly higher accuracy for sufficiently smooth functions.

1.10.7 Differential Equation

Introduction An ordinary differential equation (ODE) is an equation that involves a function and

its derivatives. A general first-order ODE has the form

dy

dx
= f(x, y)

Separable ODE A first-order ODE is separable if it can be written as

dy

dx
= g(x)h(y)

Then we solve by separating variables:
1

h(y)
dy = g(x)dx
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and integrate both sides.

Integrating Factor A first-order linear ODE has the form

dy

dx
+ P (x)y = Q(x)

can be solved by introducing

µ(x) = e
´
P (x)dx

yµ(x) =

ˆ
Q(x)µ(x)dx

Initial Condition An initial condition is a specification of the value of the solution (and possibly its

derivatives) at a particular point, usually denoted t0 or x0. For an n-th order ODE, we typically need n

initial conditions to determine a unique solution.

1.11 Polar Coordinates

A point P in the plane is described in polar coordinates by an ordered pair (r, θ), where

• r ≥ 0 is the radial distance which is the distance from the origin to the point, and

• θ is the polar angle, measured counterclockwise from the positive x-axis.

Given polar coordinates (r, θ), the corresponding Cartesian coordinates satisfy

x = r cos θ, y = r sin θ

Given Cartesian coordinates (x, y), the corresponding polar coordinates satisfy

r =
√
x2 + y2, θ = tan−1

(y
x

)
with the correct quadrant of θ chosen according to the signs of x and y.
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2 Spherical Trigonometry

2.1 Spherical Coordinates

This section is adapted from notes by 张植竣, a former member of the IOAA China team and

currently a PhD researcher at the National Astronomical Observatories of China. The author kindly

provides academic advice and has granted permission for the inclusion of this material. The original

notes are available at: https://github.com/Firestar-Reimu-Pro/My-LaTeX-Files/tree/main.

P

x

y

z

ϕ

θ

A point in spherical coordinates is specified by

(ρ, θ, ϕ)

where

• ρ ≥ 0 is the radial distance from the origin,

• θ ∈ [0, π] is the polar angle measured from the positive z-axis,

• ϕ ∈ [0, 2π) is the azimuthal angle measured in the xy-plane from the positive x-axis.

2.2 Law of Sine and Law of Cosine

Let O−xyz and O−x′y′z′ be two right-handed Cartesian coordinate systems with a common origin O.

The y-axes coincide, while the x- and z-axes are rotated relative to each other by an angle ε. For a point
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P on the sphere, its spherical coordinates in the two systems are

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (5)

x′ = r sin θ′ cosϕ′, y′ = r sin θ′ sinϕ′, z′ = r cos θ′ (6)

Hence, 
r sin θ cosϕ = r sin θ′ cosϕ′

r sin θ sinϕ = r sin θ′ sinϕ′

r cos θ = r cos θ′

(7)

By geometry, the coordinates (x, z) and (x′, z′) satisfy

x
′ = x cos ε+ z sin ε

z′ = z cos ε− x sin ε
(8)

Substituting the spherical-coordinate expressions into Eqs. (7) and (8), we obtain
sin θ′ cosϕ′ = sin θ cosϕ cos ε+ cos θ sin ε

sin θ′ sinϕ′ = sin θ sinϕ

cos θ′ = cos θ cos ε− sin θ cosϕ sin ε

(9)

Let the intersection points of the positive z-axis and z′-axis with the sphere, together with point P , form

a spherical triangle. Define

a = θ′, b = θ, c = ε, A = π − ϕ, B = ϕ′

Then Eq. (9) becomes 
sin a cosB = cos b sin c− cosA sin b cos c

sinA sin b = sin a sinB

cos a = cos b cos c+ cosA sin b sin c

(10)

From Eq. (10), the spherical law of sines follows:

sin a
sinA =

sin b
sinB =

sin c
sinC (11)
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The cosine rule for sides is

cos a = cos b cos c+ cosA sin b sin c (12)

An alternative form, the cosine rule for angles, is

cosA = − cosB cosC + cos a sinB sinC (13)

If A =
π

2
, then the cosine rule simplifies to

cos a = cos b cos c (14)

When the sides a, b, and c are small, the spherical triangle approaches a plane triangle. Using the second

order approximation

sin a ≈ a, cos a ≈ 1− a2

2

Eq. (10) reduces to 
a

sinA =
b

sinB =
c

sinC
c2 = a2 + b2 − 2ab cosA

(15)

They are precisely the law of sines and the law of cosines in plane geometry.

3 Astronomical Coordinate Systems

3.1 Horizontal Coordinate System

The Horizontal Coordinate System, also known as the Altitude–Azimuth (Alt–Az) Coordinate

System, is a location-based system used in observational astronomy to specify the position of a celestial

object in the sky as seen by a particular observer at a particular time. In the coordinate system,

there are

• Horizon plane: the plane perpendicular to the local vertical direction.

• Zenith: the point directly above the observer.

• Cardinal directions: North (N), East (E), South (S), West (W).

A celestial object’s position is specified by two angles:
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1. Altitude (h or Alt): Altitude is the angular distance of an object above or below the horizon.

2. Azimuth (A or Az): Azimuth is the angular direction of an object measured positively along the

horizon from the North.

3.2 Equatorial Coordinate System

The Equatorial coordinate system is used to specify the positions of celestial objects on the celestial

sphere in a way that is largely independent of the observer’s location and only slowly changes with

time.

To define the equatorial coordinate system, we introduce the celestial sphere, an imaginary sphere of

very large radius centered on the Earth. Also, there are some other features:

• Celestial poles: They are the extensions of Earth’s rotation axis intersecting the celestial sphere.

• Celestial equator: It is the projection of Earth’s equator onto the celestial sphere.

• Celestial meridian: It is the great circle passing through the celestial poles and the zenith of the

observer.

The position of a celestial object is specified by two angles:

• Declination (δ): It is the angular distance of an object north or south of the celestial equator. Note

that

– δ = 0◦: object lies on the celestial equator

– δ > 0◦: object is north of the celestial equator

– δ < 0◦: object is south of the celestial equator

– δ = +90◦: north celestial pole

– δ = −90◦: south celestial pole

• Right Ascension (α): It is the angular distance of an object eastward along the celestial equator

from a fixed reference point. The reference point is the vernal equinox (Υ), defined as the inter-

section of the celestial equator with the ecliptic where the Sun crosses from south to north. Right

ascension is usually measured in time units:

0 ≤ α < 24h
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The Earth rotates 360◦ in approximately 24 hours. Measuring right ascension in hours makes it

directly related to Earth’s rotation and the apparent daily motion of the sky.

For example, 360◦ = 24 h.

Equatorial coordinates are fixed on the celestial sphere, but an observer sees objects in horizontal coor-

dinates (altitude and azimuth). The transformation between equatorial coordinates (α, δ) and horizontal

coordinates (A, h) depends on:

• Observer’s latitude ϕ

• Local sidereal time: When a celestial object crosses the observer’s meridian, its right ascension equals

the local sidereal time.

• Hour angle H: It is defined as

H = LST− α

A key relation is:

sinh = sinϕ sin δ + cosϕ cos δ cosH

3.3 Ecliptic Coordinate System

3.3.1 Ecliptic Plane

The ecliptic plane is the plane of the Earth’s orbit around the Sun. Its projection onto the celestial

sphere defines a great circle called the ecliptic.

3.3.2 Obliquity of the Ecliptic

The Earth’s rotation axis is tilted relative to the ecliptic plane by an angle called the obliquity of the

ecliptic:

ε ≈ 23.44◦

3.3.3 Coordinate Definitions

A celestial object’s position in the ecliptic system is specified by:

• Ecliptic latitude (β): It is the angular distance of an object north or south of the ecliptic plane.

Page 52 / 259



3 ASTRONOMICAL COORDINATE SYSTEMS By Pika and Owen

• Ecliptic longitude (λ): It is measured eastward along the ecliptic from the vernal equinox. His-

torically, ecliptic longitude was divided into twelve 30◦ segments corresponding to the zodiac con-

stellations.

Given equatorial coordinates (α, δ), the corresponding ecliptic coordinates (λ, β) are obtained by a rotation

by the obliquity angle ε.

sin β = sin δ cos ε− cos δ sin ε sinα

tanλ =
sinα cos ε+ tan δ sin ε

cosα

3.4 Galactic Coordinate System

3.4.1 Galactic Plane

The galactic plane is the plane defined by the mid-plane of the Milky Way disk. The Sun lies very close

to this plane, making it a convenient reference.

3.4.2 Galactic Center

The galactic center is the point in the sky towards which the center of the Milky Way lies, located in

the constellation Sagittarius. This point is used as the zero point for galactic longitude.

3.4.3 North Galactic Pole

The north galactic pole (NGP) is the point on the celestial sphere perpendicular to the galactic plane.

Its approximate position in equatorial coordinates (J2000.0) is:

αNGP = 12h51m, δNGP = +27◦07′

3.4.4 Coordinate Definitions

A celestial object’s position in the galactic system is specified by:

• Galactic longitude (l): It is measured along the galactic plane from the direction of the galactic

center.

• Galactic latitude (b): It is the angular distance from the galactic plane.
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Let (αNGP, δNGP) be the north galactic pole in equatorial coordinates, and α0 the RA of the galactic center.

Then

sin b = sin δ sin δNGP + cos δ cos δNGP cos(α− αNGP)

tan(l − l0) =
cos δ sin(α− αNGP)

sin δ cos δNGP − cos δ sin δNGP cos(α− αNGP)

where l0 = 0◦ is the galactic longitude of the galactic center.

3.5 Circumpolar Stars

Circumpolar stars are stars that never set below the horizon from a given location. Their position is close

enough to one of the celestial poles that they appear to trace circular paths around the pole throughout

the night. These stars are visible year-round in regions near the pole, such as in the northern hemisphere

where the North Star (α Ursae Minoris) is circumpolar. Mathematically, the declination δ of a star must

satisfy:

δ ≥ 90◦ − ϕ

where ϕ is the latitude of the observer.

4 Astronomical Time

4.1 Solar Time

4.1.1 Definition

Solar time is based on the apparent motion of the Sun across the sky. It measures time by the Earth’s

rotation relative to the Sun.

4.1.2 Apparent Solar Time

Apparent solar time is determined directly by the observed position of the real Sun. It can be measured

using a sundial.However, apparent solar days are not all of equal length due to:

1. The ellipticity of the Earth’s orbit (Kepler’s second law).

2. The obliquity of the Earth’s axis relative to the ecliptic.

As a result, the apparent solar day varies slightly over the year.
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4.1.3 Mean Solar Time

To obtain a uniform time scale, astronomers define the mean Sun, a fictitious point that moves uniformly

along the celestial equator, completing one revolution per year. Mean solar time is the time measured

by the hour angle of the mean Sun.

• A mean solar day is defined to be exactly 24 hours.

• Civil time (e.g. UTC, ignoring leap seconds) is based on mean solar time.

4.1.4 Equation of Time

The difference between apparent solar time and mean solar time is called the equation of time:

Equation of Time = Apparent Solar Time−Mean Solar Time

Its value varies throughout the year and can be as large as about ±16 minutes.

4.2 Sidereal Time

4.2.1 Definition

Sidereal time is based on the Earth’s rotation relative to the distant stars rather than the Sun. Local

sidereal time (LST) is defined as the hour angle of the vernal equinox.

4.2.2 Sidereal Day

A sidereal day is the time it takes for the Earth to rotate once relative to the fixed stars, rather than the

Sun. This period is about 23 hours, 56 minutes, and 4.1 seconds, slightly shorter than a solar day. The

relationship between solar time and sidereal time is given by

Sidereal Time = Solar Time− Longitude Correction

To calculate sidereal time at a given location, the following formula is used:

Sidereal Time (ST) = GMST+ Longitude Correction

where
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• GMST is the Greenwich Mean Sidereal Time, which is the sidereal time at the Prime Meridian.

• Longitude Correction is based on the observer’s longitude.

The GMST is computed as follows:

GMST = 280.46061837◦ + 360.98564736629◦ × (JD− 2451545.0)

where JD is the Julian Date. The Julian Date (JD) is the number of days (and fractions of a day) that

have elapsed since

12:00 noon (UT) on 1 January 4713 BCE (Julian calendar)

4.3 Heliocentric Julian Date (HJD)

The Heliocentric Julian Date is the Julian Date (JD) corrected for the light travel time between the

Earth and the Sun. This correction accounts for the position of the Earth in its orbit.

HJD = JD+
r · ŝ
c

where

• r is the vector from the Sun to the Earth,

• ŝ is the unit vector pointing toward the observed object,

• c is the speed of light.

4.4 Local Mean Time (LMT)

Local Mean Time (LMT) at a given location is defined as the mean solar time at that longitude.

4.5 Universal Time (UT)

Universal Time (UT) is a global time standard defined as the Local Mean Time at the Prime Meridian

(0◦ longitude), which passes through Greenwich, London. Hence,

UT = LMT at λ = 0◦
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Universal Time is therefore often referred to as Greenwich Mean Time (GMT) in non-technical con-

texts.

4.6 Time Zones

To simplify civil timekeeping, the Earth is divided into time zones, each using a single standard time

rather than local mean time at every longitude. In an ideal model:

• The Earth is divided into 24 time zones.

• Each zone spans 15◦ of longitude.

• The central meridian of each zone differs from the next by 15◦.

The standard time of a zone equals the LMT of its central meridian. If a time zone has central longitude

λ0, then its standard time satisfies

Zone Time = UT+
λ0
15

This offset is usually written as UTC ±n, where n is an integer number of hours.

4.7 Different Definitions of a Year

There are several distinct astronomical definitions of a year, each corresponding to a different reference

frame or physical phenomenon:

• Sidereal Year: The time required for the Earth to complete one full revolution around the Sun

with respect to the fixed stars. Its length is approximately 365.25636 days.

• Tropical Year: The interval between two successive passages of the Sun through the vernal equinox.

With a duration of approximately 365.24219 days, it is the basis of civil calendars, as it ensures long-

term alignment with the seasons.

• Anomalistic Year: The time elapsed between two successive passages of the Earth through perihe-

lion. This year has a mean length of approximately 365.25964 days and reflects the effects of orbital

precession.

• Julian Year: A conventional unit of time defined to be exactly 365.25 days. It is commonly

employed in astronomical calculations for simplicity and standardization.
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5 Basic Units in Astronomy

Definition. 5.1: Astronomical Unit

The Astronomical Unit (AU) is the average distance between the Earth and the Sun.

Definition. 5.2: Light Year

A light-year is the distance that light travels in a vacuum in one year.

Definition. 5.3: Parsec

A parsec is the distance at which one astronomical unit subtends an angle of one arcsecond.

1 pc = 1AU
tan(1′′) ≈ 3.086× 1016 m ≈ 3.262 ly ≈ 206, 265AU

6 Fundamental Mechanics

6.1 Kinematics

6.1.1 Linear Motion

We can use the position vector r(t) to specify the position of a particle in a plane at time t.

x

y

r(t1)

r(t2)

∆r

The figure above shows the position of a particle at two different times, t1 and t2. The displacement

vector is given by

∆r = r(t2)− r(t1)
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The average velocity during the time interval ∆t = t2 − t1 is:

vav =
∆r
∆t

The instantaneous velocity at time t0 is obtained by taking the limit as ∆t→ 0

v =
dr
dt

The instantaneous speed is the magnitude of the velocity vector

v = |v|

The average acceleration is the rate of change of velocity

aav =
∆v
∆t

and the instantaneous acceleration is

a =
dv
dt

=
d2r
dt2

Suppose a particle moves with a constant acceleration a. At time t0, let its velocity and position be v0

and x0, respectively. Then, the motion can be described by:

x = x0 + v0(t− t0) +
1
2
a(t− t0)

2

v = v0 + a(t− t0)

|v|2 − |v0|2 = 2 a · (x − x0)

The time derivative of a vector provides information about the rate of change of the vector’s magnitude

and direction.

6.1.2 Relative Motion

Introduction Let us consider two objects, A and B, moving in a straight line or in a plane. The velocity

of object A relative to object B is given by

vA/B = vA − vB
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where

• vA is the velocity of object A relative to a fixed reference frame.

• vB is the velocity of object B relative to the same reference frame.

• vA/B is the velocity of object A relative to object B.

When two bodies are rotating relative to each other, their angular velocities need to be combined to

determine the relative angular velocity. If object A has angular velocity ωA and object B has angular

velocity ωB, the relative angular velocity of A with respect to B, denoted as ωA/B, is given by:

ωA/B = ωA − ωB

It is assumed that both objects are rotating about the same axis.

Retrograde Motion Retrograde motion is the apparent backward motion of a planet relative to the

background stars, caused by the relative orbital motion of Earth and the planet. Earth moves faster in its

inner orbit. Earth moves faster in its inner orbit.

Figure 4: Source: https://starwalk.space/en/news/what-is-retrograde-motion

Example. Given:

TE = 365.25 days

TMars = 686.98 days

Page 60 / 259



6 FUNDAMENTAL MECHANICS By Pika and Owen

Angular speeds:

ωE =
360◦

365.25
= 0.9856◦/day

ωMars =
360◦

686.98
= 0.524◦/day

Relative angular speed:

ωrel = ωE − ωMars = 0.4616◦/day

This relative angular motion causes Mars to appear to move backward against the stars during opposition.

The duration between successive retrograde motions of a planet is equal to its synodic period.

Synodic Period and Sidereal Period The synodic period (Tsyn) is the time interval between two

successive identical configurations of a planet as observed from Earth (e.g., opposition to opposition or

conjunction to conjunction).

The sidereal period (Ts) of a celestial body is the time taken to complete one full revolution around the

Sun with respect to the fixed background stars.

Example. Let

• TE = sidereal period of Earth

• TP = sidereal period of the planet

For inferior planets (Mercury, Venus):

1

Tsyn
=

1

TP
− 1

TE

For superior planets (Mars, Jupiter, Saturn):

1

Tsyn
=

1

TE
− 1

TP

Slingshot Effect of Gravity The slingshot effect, also known as gravitational assist, occurs when

a spacecraft uses the gravity of a planet or moon to change its trajectory and increase its velocity. This is

achieved by flying close to a planet or moon, which causes the spacecraft to accelerate as it is pulled by the

planet’s gravitational field. The effect is used to save fuel and to direct spacecraft to their destinations.
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Mathematically, this can be described by the following equation for velocity change during the flyby

∆v = vspacecraft + vplanet

where

1. vspacecraft is the velocity of the spacecraft, and

2. vplanet is the velocity of the planet as seen from the spacecraft’s reference frame.

6.2 Newton’s Law

First Law (Law of Inertia) An object remains at rest, or moves in a straight line at constant velocity,

unless acted upon by an external force.

∑
F = 0 =⇒ a = 0

Second Law The net force on a particle is equal to the time rate of change of its momentum:

∑
F =

dp
dt

For constant mass, ∑
F = ma

This is the most commonly used form of Newton’s Second Law.

Third Law For every action, there is an equal and opposite reaction:

FAB = −FBA

6.3 Linear Momentum

6.3.1 Introduction

Linear momentum is a fundamental concept in mechanics that describes the motion of an object in terms

of its mass and velocity. It is defined as the product of an object’s mass and velocity:

p = mv
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where

• p is the linear momentum of the object,

• m is the mass of the object, and

• v is the velocity of the object.

6.3.2 Conservation of Linear Momentum

In an isolated system (no external forces), the total linear momentum of the system remains constant.

This is known as the conservation of linear momentum. Mathematically, for a system of particles,

n∑
i=1

pi = constant

where pi is the linear momentum of the i-th particle.

6.3.3 Impulse

The impulse of a force F acting on an object is defined as the change in the object’s momentum. Mathe-

matically,

J = ∆p = F∆t

where J is the impulse, ∆p is the change in momentum, F is the average force, and ∆t is the time interval

during which the force acts.

6.3.4 Rocket Equation

Let the rocket expel a small mass of fuel dm in a short time interval dt. By conservation of momentum,

Initial momentum = Final momentum

Initially, the momentum of the rocket is

pinitial = m(t)v(t)

After expelling dm of fuel, the rocket mass becomes m(t) − dm and its velocity becomes v(t) + dv. The

expelled fuel has momentum dm · (v − u), because it moves at velocity v − u in the inertial frame. Hence
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the final momentum is

pfinal =
(
m(t)− dm

)(
v + dv

)
+ dm

(
v − u

)
Using differential approximation (ignoring higher-order terms dmdv) and equating momentum:

mdv = u dm

Integrating from the initial mass m0 to the final mass mf and initial velocity v0 to final velocity vf :

ˆ vf

v0

dv = u

ˆ mf

m0

dm

m

vf − v0 = u ln m0

mf

If external forces (like gravity g or drag Fdrag) act on the rocket, the generalized form is

m
dv

dt
= u

dm

dt
+ Fext(t)

where Fext(t) represents any additional force.

6.4 Force, Torque and Equilibrium of Body

The force is any interaction that causes a change in an object’s motion. It is a vector quantity, having

both magnitude and direction. In vector notation:

F = (Fx, Fy, Fz)

SI Unit: Newton (N) which is defined as

1N = 1 kg m s−1

Example of Forces

• Gravitational force: Fg = mg

• Normal force: the perpendicular reaction from a surface

• Friction: f = µN (opposes motion)
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• Tension: force transmitted through a rope

The torque τ produced by a force F acting at a distance r from the pivot is the cross product:

τ = r × F

The magnitude is given by

τ = rF sin(θ)

SI Unit: Newton-meter (Nm)

Pivot Point

F

r (Lever Arm)

θ

F⊥ = F sin θ

A body is said to be in equilibrium when the net force acting on it is zero, and the net torque acting on

it is also zero. There are two types of equilibrium:

• Translational equilibrium occurs when the sum of all forces acting on a body is zero:

∑
F = 0

• Rotational equilibrium occurs when the sum of all torques acting on a body about any point is

zero: ∑
τ = 0

6.5 Energy

When a constant force F acts on an object and causes a displacement s, the work done by the force is

defined as the dot product

W = F · s = Fs cos θ

where θ is the angle between the force and the displacement.
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s

F

θ

If the force is not constant, then

W =

ˆ
C

F · ds

where C is the path of the object. Note that

• Work is a scalar quantity.

• W > 0 if force and displacement are in the same direction.

• W < 0 if force opposes motion (e.g. friction).

• W = 0 if F ⊥ s (no work done).

For an object of mass m moving vertically through a height h:

Wg = −mgh

if the object is lifted upward, and

Wg = +mgh

if it moves downward. The kinetic energy of a body of mass m moving with speed v is

K =
1

2
mv2

6.6 Circular Motion

6.6.1 Kinematics

Consider an object (for example, a dog on a rope) rotating about a fixed point with a radius r.

r(t1)

r(t2)

∆θ

Center of rotation
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• Angular displacement: ∆θ (in radians)

• Angular velocity: ω =
dθ

dt

• Angular acceleration: α =
dω

dt
=
d2θ

dt2

The rotational kinematic equations (analogous to linear motion) are

θ = θ0 + ω0t+
1
2
αt2

ω = ω0 + αt

ω2 − ω2
0 = 2α(θ − θ0)

For an object moving in a circle of radius r,

v = rω

is the tangential (linear) speed.

The tangential acceleration is

atan = rα

and the radial (centripetal) acceleration is

arad =
v2

r
= rω2

6.6.2 Centripetal Force

Centripetal force is the force that acts on an object moving in a circular path. It is directed towards the

center of the circle or axis of rotation. The magnitude of the centripetal force is given by

Fc =
mv2

r

where

• m is the mass of the object,

• v is the velocity of the object,

• r is the radius of the circular path.
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Center
Object

v

Fc

r

Figure 5: Centripetal force always points toward the center of the circle.

6.6.3 Centrifugal Force

Centrifugal force is a fictitious or pseudo force that appears to act on an object when viewed from a rotating

reference frame. It appears to push the object away from the center of rotation. It is equal in magnitude

and opposite in direction to the centripetal force in the rotating frame of reference. The magnitude of the

centrifugal force is

Fcf =
mv2

r

6.6.4 Coriolis Force

Coriolis force is an apparent force that acts on a mass moving in a rotating system, such as the Earth. It

arises due to the rotation of the reference frame. The Coriolis force is given by

FCoriolis = 2mv × ω

where

• m is the mass of the object,

• v is the velocity of the object relative to the rotating frame,

• ω is the angular velocity vector of the rotating reference frame.

6.6.5 Angular Momentum

For a particle at position r (relative to the origin) with linear momentum p:

L = r × p
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For a rigid body rotating around a fixed axis with moment of inertia I and angular velocity ω:

L = Iω

Just as force changes linear momentum, torque (τ ) changes angular momentum:

τ net =
dL
dt

Theorem. 6.1: Conservation of Angular Momentum

If the net external torque on a system is zero (τ ext = 0), the total angular momentum is conserved:

Li = Lf
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6.7 Case Study

A circular disk rotating about its axis with angular speed ω0 is placed gently with its axis horizontal on a

rough and inclined plane such that the friction acts up the plane. Given that the coefficient of friction is

µ and the inclination angle of the plane to the horizontal is ϕ.

(a) Show that the disk will move upwards if µ > tanϕ.

(b) Find the time that elapses before rolling takes place.

Solution. (a)

ϕ

R

a

f

ω0

x

θ̇

C

mg

Equations of Motion: Take downward as positive and take counterclockwise as positive. Using Newton’s

Second Law for translation along the plane and rotation about the center of mass:

mẍ = mg sinϕ− f (16)

R−mg cosϕ = 0 =⇒ R = mg cosϕ (17)

Iθ̈ = τ (18)

Since the disk is slipping, kinetic friction applies:

f = µR = µmg cosϕ (19)

Substituting (19) into (16):

mẍ = mg sinϕ− µmg cosϕ =⇒ ẍ = g(sinϕ− µ cosϕ) < 0
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g(sinϕ− µ cosϕ) < 0

sinϕ < µ cosϕ

tanϕ < µ

Hence, the disk will move upwards if µ > tanϕ .

(b) For pure rolling,

vcontact = v + aω = 0

where v = ẋ is the linear velocity and ω = θ̇ is the angular velocity. Note that

v(t) = v0 + ẍt = 0 + g(sinϕ− µ cosϕ)t

Also,

τ = −f · a = −(µmg cosϕ)a

Using I =
1

2
ma2 for a disk,

1

2
ma2θ̈ = −µmga cosϕ =⇒ θ̈ = −2µg cosϕ

a

Note that

ω(t) = ω0 + θ̈t = ω0 −
2µg cosϕ

a
t

Substitute (6.7) and (6.7) into the rolling condition (6.7):

v(t) + aω(t) = 0

[g(sinϕ− µ cosϕ)t] + a

[
ω0 −

2µg cosϕ
a

t

]
= 0

gt(sinϕ− µ cosϕ) + aω0 − 2µgt cosϕ = 0

gt(sinϕ− µ cosϕ− 2µ cosϕ) = −aω0

gt(sinϕ− 3µ cosϕ) = −aω0

t =
−aω0

g(sinϕ− 3µ cosϕ)
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7 Orbital Mechanics

7.1 Newton’s Law of Universal Gravitation

7.1.1 Introduction

Theorem. 7.1: Newton’s Law of Universal Gravitation

The Universal Law of Gravity states that every point mass attracts every other point mass with a

force that is directly proportional to the product of their masses and inversely proportional to the

square of the distance between their centers. This is mathematically expressed as

F = G
m1m2

r2

where

• F is the magnitude of the gravitational force between the two masses,

• G is the gravitational constant,

• m1 and m2 are the two masses,

• r is the distance between the centers of the two masses.

Theorem. 7.2: Newton’s Law of Universal Gravitation (Vector Form)

The gravitational force between two point masses m1 and m2 can be written in vector form as

F = −Gm1m2

r2
r̂

where

• F is the gravitational force vector on m1 due to m2,

• G is the gravitational constant,

• m1 and m2 are the masses of the two objects,

• r is the distance between the two masses,

• r̂ is the unit vector pointing from m1 to m2, i.e., the direction of the force.
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The negative sign indicates that the force is attractive, meaning the force is directed towards the

other mass.

Theorem. 7.3: Gauss’s Law of Gravity

∇ · g = −4πGρ

where

• ∇ · g is the divergence of the gravitational field g, and

• ρ is the mass density of the object.

This law can be integrated over a closed surface to give the integral form of Gauss’s Law for gravity:

˛
S

g · dA = −4πGMenc

where Menc is the mass enclosed by the surface.

7.1.2 Barycentre

The barycentre or centre of mass is the weighted average position of all the mass in a system. It is the

point where, if all the mass were concentrated, the system would balance. For a system of particles with

masses m1,m2, . . . ,mn located at positions r1, r2, . . . , rn, the position of the barycentre R is given by

R =
1

M

n∑
i=1

miri

where M =
n∑

i=1

mi is the total mass of the system.

For a continuous mass distribution, the barycentre is calculated by integrating over the mass distribution.

If the mass density is ρ(r), the barycentre position is given by

R =
1

M

ˆ
V

r ρ(r) dV

where M =

ˆ
V

ρ(r) dV is the total mass of the system, and the integral is taken over the volume V of the

mass distribution.
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7.1.3 2-body Problem

Consider two point masses, m1 at position vector r1 and m2 at position vector r2, interacting via a central

force:

m1r̈1 = F21, m2r̈2 = F12 = −F21

The center of mass (barycenter) is located at

R =
m1r1 +m2r2
m1 +m2

and since the internal forces cancel by Newton’s third law, the acceleration of the center of mass is

R̈ = 0

Hence, the center of mass moves in a straight line with constant velocity. Define the relative position

vector

r = r1 − r2

Differentiating twice with respect to time gives:

r̈ = r̈1 − r̈2 =
F21

m1

− F12

m2

=
F(r)
m1

+
F(r)
m2

=

(
1

m1

+
1

m2

)
F(r)

Define the reduced mass

µ =
m1m2

m1 +m2

Then

µr̈ = F(r)

which is an effective one-body problem where a particle with mass µ moves under the force F(r). The

angular momentum about the center of mass for the effective one-body problem with reduced mass µ is

L = µr × v

For a central force

F(r) = f(r)r̂
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the torque is given by

τ = r × F(r) = r × f(r)r̂ = 0

Hence,
dL
dt

= τ = 0 =⇒ L = constant

The total energy of the system is

E =
1

2
µṙ2 +

1

2
µr2θ̇2 + U(r)

where U(r) is the potential energy of the central force. Note that

L = |L| = µr2θ̇

Using

θ̇ =
L

µr2

we have
1

2
µr2θ̇2 =

L2

2µr2

E =
1

2
µṙ2 +

[
U(r) +

L2

2µr2

]
︸ ︷︷ ︸

Veff(r)

7.1.4 n-body Problem

Consider N bodies with masses mi and position vectors ri(t) in three-dimensional space. According to

Newton’s law of gravitation, the acceleration of the i-th body is given by

�ri =
N∑
j=1
j ̸=i

G
mj(rj − ri)
‖rj − ri‖3

, i = 1, 2, . . . , N (20)

where ‖rj − ri‖ is the Euclidean distance between bodies i and j.

7.1.5 Binet’s Equation

The classical Binet equation describes the shape of an orbit under a central gravitational force. It is given

by
d2u

dθ2
+ u =

GM

L2
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where

• u =
1

r
is the reciprocal of the radial distance,

• G is the gravitational constant,

• M is the mass of the central body, and

• L is the angular momentum per unit mass.

The general solution to this equation is an ellipse, with the form

u(θ) =
1

r(θ)
=
GM

L2
(1 + e cos(θ − θ0))

where

• e is the eccentricity of the orbit, and

• θ0 is the initial phase of the orbit.

General Relativity introduces corrections to the orbit, particularly in the presence of a strong gravitational

field. One important relativistic effect is the precession of the perihelion, which causes the orbit to shift

over time. For orbits around a massive central body like the Sun, the general relativistic correction to the

Binet equation can be written as
d2u

dθ2
+ u =

GM

L2

(
1 +

3GM

c2L2

)

7.2 Kepler’s Law

7.2.1 Three Kepler’s Laws

Theorem. 7.4: Kepler’s First Law

The orbit of every planet is an ellipse with the Sun at one of the two foci. The general equation for

an ellipse in polar coordinates (r, θ) with one focus at the origin is

r =
a(1− e2)

1 + e cos θ

where a is the semi-major axis, and e is the eccentricity (0 ≤ e < 1). The eccentricity of an orbit

describes how elliptical it is. For a perfectly circular orbit, the eccentricity is 0, while for an elliptical

orbit, it is between 0 and 1. The closer the eccentricity is to 1, the more elongated the orbit.
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1. Inner Solar System: The four terrestrial planets are located here, and their orbits are closer

to the Sun with relatively small eccentricities.

2. Outer Solar System: The gas giants and icy bodies like comets have more elongated orbits

and are located farther from the Sun.

Proof. Let the system be a planet of mass m orbiting a star of mass M (assumed fixed at the origin).

The gravitational force is

F = −GMm

r2
r̂ = ma

where µ = GM is the gravitational parameter and r = rr̂. The acceleration is a = − µ

r2
r̂.

• Angular Momentum L (Kepler’s Second Law): The torque is τ = r×F = 0 (since r is parallel

to F). Therefore, the angular momentum is constant:

L = r × p = m(r × v) = constant

The orbit is confined to the plane perpendicular to L.

• Laplace-Runge-Lenz (LRL) Vector A: The LRL vector is a constant of motion only for an

inverse-square force. It is defined as

A = p × L −mµr̂

To prove it’s conserved, we show dA
dt

= 0. Using the product rule,

dA
dt

=
dp
dt

× L + p × dL
dt

−mµ
dr̂

dt

As dp
dt

= F and dL
dt

= τ = 0,
dA
dt

= F × L −mµ
dr̂

dt

By F = −mµ
r2
r̂ and L = m(r × v):

F × L = −mµ
r2
r̂ ×m(r × v) = −m

2µ

r2
[(r̂ · v)r − (r̂ · r)v]
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By a × (b × c) = (a · c)b − (a · b)c, r̂ · r = r and r̂ · v = ṙ,

F × L = −m
2µ

r2
[(ṙ)r − (r)v] = mµ

[
rv
r2

− ṙr
r2

]

Note that
dr̂

dt
=

d

dt

(r
r

)
=

ṙr − rṙ
r2

=
vr − rṙ
r2

Hence, F × L = mµ
dr̂

dt
. Therefore,

dA
dt

= mµ
dr̂

dt
−mµ

dr̂

dt
= 0

The LRL vector A lies in the orbital plane. We find the orbit equation by taking the dot product of A

with the position vector r:

r · A = r · (p × L −mµr̂) = r · (p × L)−mµ(r · r̂)

Using the scalar triple product identity a · (b × c) = c · (a × b),

r · (p × L) = L · (r × p)

Since r × p = L, the identity simplifies to

r · (p × L) = L · L = L2

Therefore,

r · A = L2 −mµr

The LRL vector A is constant. Let A = |A|. We define the angle θ between r and A. Then r ·A = rA cos θ:

rA cos θ = L2 −mµr

r =
L2

mµ

1

1 + A
mµ

cos θ

Normalizing by m = 1 gives

r =
ℓ

1 + e cos θ
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which is the equation of conic section in polar coordinates, where

• The semi-latus rectum is ℓ = L2

mµ
.

• The eccentricity is e = A

mµ
.

As A, m, and µ are all positive, the eccentricity e is a non-negative constant.

• If the total energy E < 0, then 0 ≤ e < 1, which defines an ellipse.

• If E = 0, then e = 1, defining a parabola.

• If E > 0, then e > 1, defining a hyperbola.

Planetary orbits are bound orbit, meaning the total mechanical energy E is negative (E < 0). This

guarantees 0 ≤ e < 1, proving that the orbit is an ellipse with the Sun (the central mass) at one focus.
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Theorem. 7.5: Kepler’s Second Law

A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

Proof.

• The gravitational force F is always directed along the line connecting the planet and the Sun (it’s a

central force).

F = −GMm

r2
r̂

• The torque (τ ) on the planet with respect to the Sun (the origin) is given by

τ = r × F = r ×
(
−GMm

r2
r̂

)

Since r and r̂ are in the same direction, r × r̂ = 0. Hence, the torque is zero: τ = 0.

• By Newton’s second law for rotation, the torque is equal to the rate of change of the angular

momentum (L):

τ =
dL
dt

Since τ = 0, the angular momentum L is conserved:

L = r × p = r × (mv) = constant

where p is the linear momentum.

• The angular momentum can be expressed in terms of the area swept out per unit time. Consider

an infinitesimal time dt. The area dA swept by the radius vector r is approximately the area of a

triangle:

dA =
1

2
|r × dr|

Since dr = vdt, we have:

dA =
1

2
|r × vdt| = 1

2
|r × v|dt

• The rate at which area is swept out is dA
dt

:

dA

dt
=

1

2
|r × v| = 1

2m
|r ×mv| = |L|

2m
= constant
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Theorem. 7.6: Kepler’s Third Law

Kepler’s Third Law states that the square of the orbital period T of a planet is directly proportional

to the cube of the semi-major axis a of its orbit. Mathematically,

T 2 ∝ a3

In the case of elliptical orbits, where a is the semi-major axis, the law still holds and it can be

expressed as

T 2 =
4π2

GM
a3

where

• T is the orbital period of the planet.

• a is the semi-major axis of the ellipse.

• G is the gravitational constant.

• M is the mass of the central body (e.g., the Sun).

Proof. By Kepler’s 2nd law,
πab

T
=

L

2m

as the area of ellipse is given by πab. By Kepler’s 1st law, r = a(1− e) and

r(θ) =
L2

GMm2(1 + e cos θ) .

Then L2

m2
= a(1− e2)GM . Substitute the formula involving the area, T 2 =

4π2

GM
a3.

In some regions of the Solar System, objects have synchronized orbital periods due to gravitational inter-

actions. This phenomenon, known as orbital resonance, is particularly important in the asteroid belt and

among some moons of the giant planets.
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7.2.2 Kepler’s Equation

x

y

O F

Q

P

E

The eccentric anomaly E is defined using an auxiliary circle:

• Draw a circle of radius a centered at the origin (the auxiliary circle).

• For a point P on the ellipse, draw a vertical line to intersect the auxiliary circle at Q.

• The eccentric anomaly E is the angle ∠XOQ.

where O is the center of the ellipse and X is the positive x-axis direction. Although E is not a physical

angle measured from the focus, it provides a convenient parametrization of the ellipse. Using the eccentric

anomaly E, the position of the orbiting body is

x = a(cosE − e)

y = a
√
1− e2 sinE

The true anomaly ν is the physical polar angle of the orbiting body measured from periapsis. The

relation between ν and E is

tan ν
2
=

√
1 + e

1− e
tan E

2

The area swept from periapsis to point P on the ellipse is

A =
a2

2
(E − e sinE)
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The total area of the ellipse is πa2
√
1− e2, but by Kepler’s second law, the fraction of area swept equals

the fraction of time elapsed:
A

πa2
=
t− τ

T

where T is the orbital period. Using mean anomalty

M ≡ n(t− τ)

(where mean motion n = 2π/T and τ is the time of periapsis passage), we obtain

M = E − e sinE

which is the Kepler’s equation.

7.2.3 Poisson Bracket

Definition. 7.1: Poisson Bracket

The Poisson bracket of two functions f(q, p) and g(q, p), where q and p represent generalized coor-

dinates and momenta, is defined as

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
Here, qi and pi represent the generalized coordinates and momenta for the i-th degree of freedom.

Definition. 7.2: Levi-Civita Symbol

The Levi-Civita symbol is defined as

ϵijk =


+1 if (i, j, k) is an even permutation of (1, 2, 3),

−1 if (i, j, k) is an odd permutation of (1, 2, 3),

0 if any two indices are equal.

Definition. 7.3: Lie Algebra

A Lie algebra is a vector space g over a field (typically R or C) equipped with a binary operation

called the Lie bracket, denoted by [·, ·]. The Lie bracket is a bilinear map that satisfies the following
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two properties:

• Bilinearity:

[aX+bY, Z] = a[X,Z]+b[Y, Z], [Z, aX+bY ] = a[Z,X]+b[Z, Y ] for all X,Y, Z ∈ g, a, b ∈ F

• Antisymmetry:

[X,Y ] = −[Y,X] for all X,Y ∈ g

• Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g

For the angular momentum L = r × p, the components of the angular momentum are

Li = ϵijkrjpk

where ϵijk is the Levi-Civita symbol, and we are summing over repeated indices.

{pi, Lj} = {pi, ϵjklrkpl} = ϵjkl ({pi, rkpl})

As the position rk and momentum pl are conjugate variables, we have

{pi, rk} = −δik

and

{pi, pl} = 0

Note that

{pi, rkpl} = rk{pi, pl}+ pl{pi, rk} = −plδik

Finally,

{pi, Lj} = ϵjkl(−plδik) = −ϵjklplδik = ϵijkpk
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Define W =
{ p
m
,L
}
− GMm

r
r which is generalized LRL vector. One can prove that

{Wi,Wj} = ϵijk

(
−2E

m
Lk

)

and show that it forms lie algebra.

7.3 Shell Theorem

Theorem. 7.7: Shell Theorem

• A spherically symmetric shell of mass exerts no net gravitational force on a particle located

inside the shell.

• A spherically symmetric shell of mass exerts a gravitational force on an external point

mass as if all the mass were concentrated at the shell’s center.

For a point mass located at a distance r < R inside a uniform solid sphere (e.g., a planet), the Shell

Theorem implies:

• Only the mass enclosed within radius r contributes to the gravitational force.

• Mass at radii greater than r exerts no net force by First Shell Theorem by considering it as infinites-

imal shells.

O

mF

Only inner mass contributes:
M(r) = M · r3

R3

Assuming uniform density, the mass enclosed within radius r is

M(r) =M · r
3

R3
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Then, the gravitational force on a test mass m located at distance r from the center is

F =
GM(r)m

r2
=
GMm

R3
· r

by second shell theorem.

Example. (Simple Gravity Train) Mass outside the spherical surface of radius r produces zero net

force. The mass enclosed is

M(r) =M · r
3

R3

The gravitational force magnitude is therefore

F = −G M(r)m

r2
= −GMm

R3
r = mr̈

which is in Simple Harmonic Form (SHM) form a = −ω2x. Therefore, ω =

√
GM

R3
and time of travel

t =
π√
GM
R3

= π

√
R

g
.

Remark. The gravity train (also known as the Gauss gun, gravity elevator, or vacuum train) is a fasci-

nating thought experiment in classical mechanics. First proposed by Robert Hooke in the 17th century

and later analyzed by Isaac Newton, it explores what would happen if a tunnel were drilled through the

Earth and an object were dropped through it.

Example. (Generalised Gravity Train) Consider a straight tunnel connecting two arbitrary points

A and B on Earth’s surface, not necessarily antipodal. The tunnel forms a chord of Earth’s circular

cross-section.

Let s be the coordinate along the tunnel, with s = 0 at the midpoint M . The endpoints are at s = ±L/2.

For a point inside a homogeneous Earth at position r from the center, the gravitational force is radial:

F = −GM(r)

r2
r̂, with M(r) =

r3

R3
M

Hence,

F = −GM
R3

r r̂

Let the tunnel be at a constant perpendicular distance y from Earth’s center. For a point on the tunnel

Page 86 / 259



7 ORBITAL MECHANICS By Pika and Owen

at coordinate s, its radial distance from Earth’s center is:

r(s) =
√
s2 + y2

The component of gravitational force along the tunnel (in the ŝ direction) is

Fs = F · ŝ =
(
−GM
R3

r r̂
)
· ŝ

Since r̂ =
sŝ + yŷ

r
, we have:

Fs = −GM
R3

r
(s
r

)
= −GM

R3
s = ms̈

which is also in SHM form.

7.4 Gravitational Potential Energy

Definition. 7.4: Conservative Force

Potential energy can be defined only for conservative forces, which satisfy:

• The work done is path-independent.

• The net work over a closed loop is zero.

• A scalar potential function U(r) exists.

Theorem. 7.8: Potential Energy

For a conservative force F, the force is related to potential energy by

F = −∇U

Theorem. 7.9: Gravitational Potential Energy

The gravitational potential energy (U) of an object in a gravitational field is defined as the work

done in moving the object from infinity to a point at distance r from the source of the gravitational

field. For two point masses, the gravitational potential energy is given by

U = −Gm1m2

r
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where

• U is the gravitational potential energy,

• G is the gravitational constant,

• m1 and m2 are the two masses,

• r is the distance between the centers of the two masses.

Proof. The gravitational force is:

F = G
Mm

r2

Then,

U =

ˆ r

∞
F dr

=

ˆ r

∞
G
Mm

r2
dr

= GMm

ˆ r

∞

1

r2
dr

= GMm

[
−1

r

]r
∞

= −GMm

r

7.4.1 Vis-viva Equation

Theorem. 7.10: Vis-viva Equation

The Vis-viva equation, also known as the orbital energy conservation equation, relates the velocity

of an orbiting body to its position and the geometry of its orbit. It is expressed as

v2 = µ

(
2

r
− 1

a

)

where

• v is the orbital speed of the orbiting body.

• r is the distance between the two bodies.

• a is the semi-major axis of the orbit.
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• µ is the standard gravitational parameter (GM).

Proof. Let v1 be the furthest distance from the object to the planet and v2 be the closest distance from

the object to the planet.

By conservation of angular momentum, m1r1v1 = mr2v2 =⇒ v2 =
r1
r2
v1. By conservation of mechanical

energy 1

2
mv2 − GMm

r
= constant.

v21 =
2GMr2

r1(r1 + r2)

By m1r1v1 = mr2v2 =⇒ v2 =
r1
r2
v1 and r1 + r2 = 2a,

v2 = µ

(
2

r
− 1

a

)

where G is the gravitational constant.

7.4.2 First Cosmic Speed, Second Cosmic Speed and Third Cosmic Speed

Definition. 7.5: First Cosmic Speed

The first cosmic speed is the minimum velocity required for an object to orbit the Earth in a circular

trajectory at the lowest possible altitude (negligible height above the surface).

For a satellite to remain in a circular orbit, the gravitational force must provide the required centripetal

force.

Fgrav = Fcentripetal

GMm

R2
= m

v21
R

where

• M : Mass of Earth (≈ 5.97× 1024 kg)

• m: Mass of the satellite

• R: Radius of Earth (≈ 6.37× 106 m)

• G: Gravitational Constant
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v1 =

√
GM

R

Definition. 7.6: Second Cosmic Speed

The second cosmic speed is the minimum velocity required for an object to break free from Earth’s

gravitational attraction, effectively escaping to infinity. It is commonly known as escape velocity.

The total energy at Earth’s surface must equal the total energy at infinity (where both potential and

kinetic energy are zero for a barely escape scenario).

Ksurface + Usurface = K∞ + U∞

1

2
mv22 −

GMm

R
= 0

v2 =

√
2GM

R

Note that v2 =
√
2v1.

Definition. 7.7: Third Cosmic Speed

The third Cosmic Speed is the launch velocity required from Earth to escape the Solar System.

This requires overcoming Earth’s gravity and then having enough residual velocity to escape the Sun’s

gravity.

• Hyperbolic Excess Velocity (v∞): Utilizing Earth’s orbital speed (vE ≈ 29.8 km/s), the space-

craft needs an excess velocity relative to Earth of

v∞ = vesc,⊙ − vE

• Launch Calculation: Applying energy conservation from Earth’s surface:

1

2
mv23 −

GMm

R
=

1

2
mv2∞

v3 =

√
v2∞ +

2GM

R
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Since 2GM

R
= v22:

v3 =
√
v2∞ + v22

7.4.3 Hohmann Transfer Orbit

The Hohmann transfer orbit is the most fuel-efficient two-impulse maneuver for transferring a spacecraft

between two coplanar circular orbits around the same central body.

Figure 6: Source: https://www.sciencedirect.com/topics/engineering/hohmann-transfer

For a spacecraft in a circular orbit of radius r around a central body of mass M , the orbital speed is

vc =

√
GM

r

For any Keplerian orbit, the speed at distance r is given by the vis-viva equation:

v2 = GM

(
2

r
− 1

a

)

where a is the semi-major axis of the orbit. Consider two circular orbits of radii r1 (initial) and r2 (final),

with r2 > r1. The Hohmann transfer orbit is an ellipse with:

1. Periapsis at r1,

2. Apoapsis at r2.
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The semi-major axis of the transfer ellipse is

a =
r1 + r2

2

The spacecraft initially moves with circular speed

v1 =

√
GM

r1

At periapsis of the transfer ellipse, the required speed is obtained from the vis-viva equation:

vp =

√
GM

(
2

r1
− 1

a

)

The first velocity increment is therefore

∆v1 = vp − v1

This burn places the spacecraft onto the elliptical transfer orbit.

At apoapsis of the transfer ellipse (r = r2), the spacecraft speed is

va =

√
GM

(
2

r2
− 1

a

)

The circular speed in the final orbit is

v2 =

√
GM

r2

The second velocity increment is

∆v2 = v2 − va

After this burn, the spacecraft is inserted into the final circular orbit.

The total fuel cost of the maneuver is measured by the total velocity increment:

∆vtotal = ∆v1 +∆v2

The Hohmann transfer minimizes ∆vtotal among all two-impulse transfers between coplanar circular orbits.

The spacecraft travels half of the elliptical orbit during the transfer. The orbital period of an ellipse is

T = 2π

√
a3

GM
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Hence, the Hohmann transfer time is

ttransfer = π

√
a3

GM

This relatively long transfer time is the main trade-off for fuel efficiency.

7.4.4 Blackhole

The event horizon is a boundary in spacetime beyond which events cannot affect an observer. It is

commonly associated with black holes, and marks the point at which the escape velocity exceeds the

speed of light. This means that not even light can escape from inside the event horizon, which is why

it appears black. For a non-rotating, spherically symmetric black hole, the event horizon is given by the

Schwarzschild radius rs, which is the radius at which the escape velocity equals the speed of light. The

Schwarzschild radius is defined as

rs =
2GM

c2

where

• G is the gravitational constant,

• M is the mass of the black hole,

• c is the speed of light.

Beyond the event horizon, all paths of particles and light curves back into the black hole, and no signal

can escape to the outside universe.

7.4.5 Virial Theorem

Homogeneous Function In the Virial Theorem, the degree refers to the degree of homogeneity of

the potential energy function with respect to the spatial coordinates. A function f(r) is said to be

homogeneous of degree k if, for any scaling factor λ,

f(λr) = λkf(r)

Let the total potential energy of an N -particle system be

U(r1, r2, . . . , rN)
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If U is homogeneous of degree k, then Euler’s theorem for homogeneous functions gives

N∑
i=1

ri · ∇riU = kU

Using the relation between force and potential,

Fi = −∇riU

we obtain
N∑
i=1

Fi · ri = −kU

Virial Theorem Consider a bound system of N particles with total kinetic energy T and total potential

energy U . If the system is stable and the potential energy is a homogeneous function of degree k in the

coordinates, then the Virial Theorem states:

2〈T 〉 = k〈U〉

where 〈·〉 denotes a time average.

Proof. Define the virial G as

G =
N∑
i=1

pi · ri

where pi = mivi is the momentum of the i-th particle. Taking the time derivative,

dG

dt
=
∑
i

(
dpi

dt
· ri + pi · vi

)

Using Newton’s second law dpi

dt
= Fi and pi · vi = miv

2
i = 2Ti, we obtain

dG

dt
= 2T +

∑
i

Fi · ri

For a bound system, G remains finite, so its time average satisfies

〈
dG

dt

〉
= 0
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Hence,

2〈T 〉+

〈∑
i

Fi · ri

〉
= 0

If the forces derive from a potential U that is homogeneous of degree k, then

∑
i

Fi · ri = −kU

leading to

2〈T 〉 = k〈U〉

For gravitational potential,

U(r) ∝ 1

r
=⇒ U(λr) = λ−1U(r) =⇒ k = −1

Hence,

2〈T 〉+ 〈U〉 = 0

Velocity Dispersion Consider a system of N particles with velocities vi. The mean velocity is

〈v〉 = 1

N

N∑
i=1

vi

The velocity dispersion is defined as the variance of the velocity distribution:

σ2 =
〈
|v − 〈v〉|2

〉
=

1

N

N∑
i=1

|vi − 〈v〉|2

In many observations, only one velocity component (e.g. along the line of sight) is measurable. The

one-dimensional velocity dispersion is

σ2
1D =

〈
(vx − 〈vx〉)2

〉
For an isotropic system,

σ2 = σ2
x + σ2

y + σ2
z = 3σ2

1D

The total kinetic energy of a system of mass M is

T =
1

2

∑
i

miv
2
i
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If the bulk motion has been subtracted and the velocity distribution is isotropic, then

T =
1

2
M〈v2〉 = 3

2
Mσ2

1D =
1

2
Mσ2

For a gravitationally bound system in virial equilibrium,

2T + U = 0

Using T ∼ 1

2
Mσ2 and U ∼ −GM

2

R
, we obtain

σ2 ∼ GM

R

Gravitational Potential Energy of a Uniform Solid sphere of Total Mass M and Radius R

The mass density is

ρ =
M

4
3
πR3

The mass inside radius r is

M(r) =
4

3
πr3ρ

A thin spherical shell of radius r and thickness dr has mass

dM = 4πr2ρ dr

The gravitational potential energy gained by bringing the shell from infinity to radius r is

dU = −GM(r) dM

r

Substituting M(r) and dM ,

dU = −G
r

(
4

3
πr3ρ

)(
4πr2ρ dr

)
= −16

3
π2Gρ2r4 dr

Integrate from r = 0 to r = R:

U =

ˆ R

0

dU = −16

3
π2Gρ2

ˆ R

0

r4 dr = −16

3
π2Gρ2

R5

5
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Thus,

U = −16

15
π2Gρ2R5

Substitute

ρ =
3M

4πR3
, ρ2 =

9M2

16π2R6

Then,

U = −16

15
π2G

(
9M2

16π2R6

)
R5 = −3

5

GM2

R

It can provide order-of-magnitude estimates of gravitational potential energy of the uniform spherical

galaxy model or other astrophysical objects. The coefficient 3

5
assumes a uniform density. Real as-

trophysical objects are centrally concentrated, leading to different numerical factors. Nevertheless, the

scaling

U ∼ −GM
2

R

remains universally applicable.

7.4.6 Tully-Fisher Relation

In 1977, R. Brent Tully and J. Richard Fisher discovered an empirical relationship between the luminosity

L of spiral galaxies and their maximum rotational velocity vmax:

L ∝ vαmax

where observations give α ≈ 3.5− 4 in the infrared and α ≈ 2.5− 3 in the blue band.
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7.5 Lagrange Point

M1 (Sun)

M2 (Earth)

L1 L2L3

L4

L5

Figure 7: The Five Lagrangian Points (L1 to L5) in the Sun-Earth System’s Rotating Frame

Two primary masses M1 and M2 orbit their common center of mass in circular motion. Let M1 > M2.

Define the reduced mass

µ =
M2

M1 +M2

Normalize M1 +M2 = 1, and the gravitational constant G = 1. In the rotating frame centerline at the

center of mass, M1 is at (−µ, 0) and M2 is at (1 − µ, 0). The angular velocity ω of the rotating frame

satisfies (from Kepler’s 3rd law for M1 and M2)

ω2 =
G(M1 +M2)

a3
= 1

since a = 1, G = 1, M1 +M2 = 1. So ω = 1. In the rotating frame, the equations of motion for a test

particle at r = (x, y) are

ẍ− 2ωẏ =
∂U

∂x
, ÿ + 2ωẋ =

∂U

∂y
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where

U(x, y) =
1

2
ω2(x2 + y2)︸ ︷︷ ︸

Centrifugal Potential

+
1− µ

r1
+
µ

r2

with

r1 =
√
(x+ µ)2 + y2, r2 =

√
(x− 1 + µ)2 + y2

Lagrange points are stationary points of U in the rotating frame (equilibrium points where ẋ = ẏ = 0):

∂U

∂x
= 0,

∂U

∂y
= 0

∂U

∂x
= x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
= 0

∂U

∂y
= y

(
1− 1− µ

r31
− µ

r32

)
= 0

For y = 0, we have r1 = |x+ µ|, r2 = |x− 1 + µ|. The x-equation becomes

x− 1− µ

(x+ µ)2
sgn(x+ µ)− µ

(x− 1 + µ)2
sgn(x− 1 + µ) = 0

• x > 1− µ (beyond M2):

x− 1− µ

(x+ µ)2
− µ

(x− 1 + µ)2
= 0

• µ < x < 1− µ (between M1 and M2):

x− 1− µ

(x+ µ)2
+

µ

(1− µ− x)2
= 0

• x < −µ (opposite side of M1 from M2):

x+
1− µ

(x+ µ)2
+

µ

(x− 1 + µ)2
= 0

They have series solution:

L1 : x ≈ 1− µ−
(µ
3

)1/3
+

1

3

(µ
3

)2/3
+ . . .

L2 : x ≈ 1− µ+
(µ
3

)1/3
+

1

3

(µ
3

)2/3
+ . . .
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L3 : x ≈ −1− 5

12
µ+ . . .

From ∂U

∂y
= 0,

y

(
1− 1− µ

r31
− µ

r32

)
= 0

If y 6= 0, then
1− µ

r31
+
µ

r32
= 1 (*)

From ∂U

∂x
= 0,

x− (1− µ)(x+ µ)

r31
− µ(x− 1 + µ)

r32
= 0

Multiply (*) by x and subtract from above:

−(1− µ)µ

r31
+
µ(1− µ)

r32
= 0 =⇒ 1− µ

r31
=

1− µ

r32

Hence, for µ 6= 1, we get r1 = r2. From r1 = r2, (*) gives

1− µ

r31
+
µ

r31
=

1

r31
= 1 =⇒ r1 = 1

So r1 = r2 = 1. Now (x+ µ)2 + y2 = 1 and (x− 1 + µ)2 + y2 = 1. Solving,

x =
1

2
− µ, y = ±

√
3

2

Therefore,

L4 :

(
1

2
− µ,

√
3

2

)

L5 :

(
1

2
− µ,−

√
3

2

)

7.6 Roche Limit

The Roche limit is the minimum distance from a planet within which a celestial body, such as a moon or

asteroid, will experience tidal forces strong enough to break it apart because of the planet’s gravity. The
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Roche limit is given by the formula

dRoche = 2.44R

(
ρplanet

ρmoon

)1/3

Derivation of simplified model: Tidal force is the difference in gravitational force felt across an object

due to another massive body.

Consider a small object of radius R located at a distance d from a much more massive body of mass M .

anear =
GM

(d−R)2
, afar =

GM

(d+R)2

The tidal acceleration is the difference between the accelerations on the near and far sides

atidal = anear − afar =
GM

(d−R)2
− GM

(d+R)2

Assume R � d. Then
1

(d±R)2
≈ 1

d2
∓ 2R

d3

Therefore,

atidal ≈ GM

((
1

d2
+

2R

d3

)
−
(

1

d2
− 2R

d3

))
= GM · 4R

d3

atidal (per side) ≈
2GMR

d3

Note that

atidal ≈
2GMpRs

d3
, aself =

Gms

R2
s

By ms =
4

3
πR3

sρs and Mp =
4

3
πR3

pρp,
2GMpRs

d3
=
Gms

R2
s

which can be simplified to

d = Rp ·
(
2 · ρp

ρs

)1/3

For the derivation of non-simplified model,

one can refer to https://dxwl.bnu.edu.cn/CN/abstract/abstract7639.shtml.
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8 Relativity

Newtonian mechanics, formulated in the 17th century, works exceptionally well for everyday speeds

(v � c). However, as experiments in the late 19th century became more precise (e.g., Michelson-Morley

experiment), inconsistencies emerged that required a new theoretical framework.

8.1 Postulates of Special Relativity

• Principle of Relativity: The laws of physics are the same in all inertial reference frames.

• Invariance of Light Speed: The speed of light in vacuum, c, is the same in all inertial frames,

regardless of the motion of the source or observer.

8.2 Galileo Transformation

In classical mechanics, the Galilean transformation relates the coordinates of an event as observed in two

inertial frames of reference moving at a constant relative velocity. Suppose we have two inertial frames:

• Frame S: stationary frame with coordinates (x, y, z, t)

• Frame S ′: moving with constant velocity v along the x-axis relative to S, with coordinates (x′, y′, z′, t′)

The Galilean transformation equations are

x′ = x− vt

y′ = y

z′ = z

t′ = t

8.3 Lorentz Transformation

Definition. 8.1: Lorentz Factor

γ =
1√

1− v2

c2

=
1√

1− β2

where v is the speed of the object and β :=
v

c
.
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In special relativity, the Lorentz transformation relates the coordinates of an event as observed in two

inertial frames moving at a constant velocity relative to each other. Unlike the Galilean transformation,

it accounts for the constancy of the speed of light.

Theorem. 8.1: Lorentz Transformation

For two inertial frames S and S ′ with S ′ moving at velocity v along the x-axis relative to S, the

Lorentz transformations are

t′ = γ
(
t− vx

c2

)
x′ = γ(x− vt)

y′ = y

z′ = z

Theorem. 8.2: Inverse Lorentz Transformation

For two inertial frames S and S ′ with S ′ moving at velocity v along the x-axis relative to S, the

inverse Lorentz transformations are

t = γ

(
t′ +

vx′

c2

)
x = γ(x′ + vt′)

y = y′

z = z′

Theorem. 8.3: Lorentz Transformation for Velocity

For two inertial frames S and S ′ with S ′ moving at velocity v along the x-axis relative to S, the

velocity transformations are

v′x =
vx − v

1− vvx
c2

v′y =
vy

γ
(
1− vvx

c2

)
v′z =

vz

γ
(
1− vvx

c2

)
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8.4 Spacetime Diagram

A spacetime diagram is a graphical representation of events in spacetime.

Time (ct)

Space (x)
Event P

x
=
ct

x
=
−
ct

x
=
ctx

=
−c
t

Future light cone

Past light cone

8.5 Relativistic Kinematics and Mechanics

8.5.1 Time Dilation

Time dilation is one of the most fascinating consequences of special relativity. It states that time measured

in a moving frame (proper time τ) appears to run slower compared to time measured in a stationary frame

(coordinate time t). The relationship between proper time (τ) and coordinate time (t) is given by

∆t = γ∆τ

Example. A spaceship travels at v = 0.8c relative to Earth. If 5 years pass on the spaceship (proper

time), how much time passes on Earth?
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Solution.

γ =
1√

1− (0.8)2
≈ 1.667

∆t = γ∆τ = 1.667× 5 ≈ 8.33 years

8.5.2 Length Contraction

Length is defined as the distance between simultaneous measurements of an object’s endpoints. For a rod

of proper length L0 at rest in S’, moving with velocity v in S. In S, measure endpoints simultaneously

(∆t = 0):

∆x = L (measurable length in S)

∆x′ = L0 (proper length in S’)

∆x′ = γ(∆x− v∆t) = γL

L =
L0

γ

Hence, moving objects appear shorter in their direction of motion.

8.5.3 Relativistic Momentum

Consider a particle with rest mass m0.

p = γm0v

8.5.4 Relativistic Energy

The correct relativistic expression for kinetic energy is

K = (γ − 1)mc2

Proof. Starting from the work-energy theorem and relativistic momentum:

K =

ˆ
F · dr =

ˆ
d

dt
(γm0v) · v dt

=

ˆ (
γm0

dv
dt

· v +m0v · dv
dt

dγ

dv2
dv2

dt

)
dt

= m0c
2

ˆ
dγ = γm0c

2 + C
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When γ = 0, K = 0. Therefore, K = (γ − 1)m0c
2.

The total energy of a particle is

E = γmc2 = K +m0c
2

This consists of two parts:

• Rest energy: E0 = m0c
2

• Kinetic energy: K = (γ − 1)mc2

8.5.5 Relation between Relativistic Momentum and Energy

From our definitions:

E = γm0c
2

p = γm0v

Compute E2 − (pc)2:

E2 − (pc)2 = (γm0c
2)2 − (γm0vc)

2

= γ2m2
0c

4

(
1− v2

c2

)
= m2

0c
41−

v2

c2

1− v2

c2

(since γ2 = 1

1− v2

c2

)

= m2
0c

4

Hence we obtain the fundamental relation:

E2 = (pc)2 + (m0c
2)2

8.6 Spacetime and Four Vector

8.6.1 Spacetime in Special Relativity

In special relativity, space and time are unified into a four-dimensional continuum called spacetime.

Events are described by four coordinates:

xµ = (x0, x1, x2, x3) = (ct, x, y, z)
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where

• x0 = ct is the temporal coordinate (with c being the speed of light)

• x1, x2, x3 are spatial coordinates

Example. A frame S ′, is moving with velocity v along the y-axis of another frame S. The Lorentz

transformation in terms of x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z, x0 ≡ ct′ is

x′0 = γ(x0 − βx1)

x′1 = γ(x1 − βx0)

x′2 = x2

x′3 = x3

where β =
v

c
and γ =

1√
1− β2

.

8.6.2 Four-Vector

A four-vector Aµ is a mathematical object that transforms under Lorentz transformations in the same

way as spacetime coordinates:

Aµ = (A0, A1, A2, A3)

The transformation rule for a Lorentz transformation Λµ
ν is

A′µ = Λµ
νA

ν

where

Λµ
ν =



γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


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Example. (Continued) A second-rank tensor has only one non-zero component in the S-frame, T 00 ≡ ρ.

The components in the S ′-frame are obtained using the Lorentz transformation:

T ′00 = γ2T 00, T ′01 = γβT 00, T ′10 = γβT 00, T ′11 = T 00

T ′22 = T 22, T ′33 = T 33

Hence, the components of T µν in S ′-frame are

T ′00 = γ2ρ, T ′01 = T ′10 = γβρ, T ′11 = ρ

8.6.3 Metric Tensor

The metric tensor gµν defines the geometry of spacetime. In special relativity with Cartesian coordinates,

it takes a simple form known as the Minkowski metric:

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


In component form:

g00 = 1, g11 = g22 = g33 = −1, gµν = 0 for µ 6= ν

The metric tensor allows conversion between contravariant (upper index) and covariant (lower index)

vectors.

Lowering an index

Aµ = gµνA
ν
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Explicitly:

A0 = g00A
0 = A0

A1 = g11A
1 = −A1

A2 = g22A
2 = −A2

A3 = g33A
3 = −A3

Raising an index

Aµ = gµνAν

where gµν is the inverse metric, which for Minkowski spacetime is identical to gµν :

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


The metric tensor and its inverse satisfy

gµλgλν = δµν =

1 if µ = ν

0 if µ 6= ν

where δµν is the Kronecker delta.

8.6.4 Invariant Interval

The invariant interval between two infinitesimally close events in spacetime is defined as:

ds2 = gµνdx
µdxν

Expanding in components for Minkowski spacetime:

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = c2dt2 − dx2 − dy2 − dz2
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For finite separation between events, the interval is:

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2

The most important property of ds2 is that it is invariant under Lorentz transformations. If we transform

to a new coordinate system x′µ:

ds′2 = gµνdx
′µdx′ν = gµνΛ

µ
ρΛ

ν
σdx

ρdxσ = gρσdx
ρdxσ = ds2

This invariance follows from the defining property of Lorentz transformations:

gµνΛ
µ
ρΛ

ν
σ = gρσ

8.6.5 Important Four-Vectors in Physics

Position Four-Vector

xµ = (ct, x) = (ct, x, y, z)

Velocity Four-Vector The four-velocity is defined as the derivative of the position four-vector with

respect to proper time τ :

uµ =
dxµ

dτ
= (γc, γv)

where τ is proper time.

The components are

u0 =
dx0

dτ
=
cdt

dτ
= γc

ui =
dxi

dτ
=
dxi

dt

dt

dτ
= γvi

Magnitude of four-velocity is given by

uµuµ = γ2(c2 − v2) =
c2 − v2

1− v2/c2
= c2

Momentum Four-Vector

pµ = muµ =

(
E

c
, p
)
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where E = γmc2 is relativistic energy and p = γmv is relativistic momentum.

Explicitly,

pµ =

(
E

c
, px, py, pz

)
Furthermore,

pµpµ =
E2

c2
− p2 = m2c2

Example. Consider two spatial and one temporal dimensions. A particle emits a photon, making an

angle θ′ with the x′-axis in a frame (S ′-frame). Hence, the trajectory of the photon can be written as

x′ = ct′ cos θ′ and y′ = ct′ sin θ′.

(a) If the S ′-frame is moving with velocity v with respect to another frame (S-frame), what is the

trajectory of the photon in the S-frame?

(b) What is the energy-momentum four-vector of the photon in the S ′-frame, if the frequency measured

in this frame is f? (Of course, the z-component, p′z, is zero.)

(c) Express the energy of the photon in the S-frame in terms of θ′.

(d) At which direction does the photon have maximum energy in the S-frame?

To find the trajectory in the S-frame, we apply the inverse Lorentz transformations. Assuming the S ′-frame

moves with velocity v along the x-axis of the S-frame, the coordinates transform as:

x = γ(x′ + vt′)

y = y′

t = γ

(
t′ +

vx′

c2

)
where γ =

1√
1− β2

and β =
v

c
. Substituting the S ′-frame trajectory x′ = ct′ cos θ′ and y′ = ct′ sin θ′:

(1) x = γ(ct′ cos θ′ + vt′) = γt′(c cos θ′ + v)

(2) y = ct′ sin θ′

(3) t = γ

(
t′ +

v(ct′ cos θ′)
c2

)
= γt′(1 + β cos θ′)

Page 111 / 259



8 RELATIVITY By Pika and Owen

To find x(t) and y(t), we solve for t′ in terms of t from (3): t′ = t

γ(1 + β cos θ′) . Substituting this into (1)

and (2):

x(t) =
c cos θ′ + v

1 + β cos θ′ t, y(t) =
c sin θ′

γ(1 + β cos θ′)t

For a photon, E ′ = hf and p′ = E ′

c
=
hf

c
. The components of the momentum vector in the S ′-frame are

p′x = p′ cos θ′ and p′y = p′ sin θ′. The four-vector P ′µ is

P ′µ =

(
E ′

c
, p′x, p

′
y, p

′
z

)
=

(
hf

c
,
hf

c
cos θ′, hf

c
sin θ′, 0

)

The energy E in the S-frame is obtained from the transformation E = γ(E ′ + vp′x):

E = γ

(
hf + v

hf

c
cos θ′

)
= γhf(1 + β cos θ′)

The energy E(θ′) = γhf(1+β cos θ′) is maximized when cos θ′ is at its maximum value. This occurs when

cos θ′ = 1, which corresponds to θ′ = 0. Therefore, the photon has maximum energy when emitted in the

forward direction (the same direction as the velocity v).

8.7 Introduction to General Relativity

Relevant Questions

Romanian Master of Physics 2014

Problem 3 (Black Holes Physics),

Romanian Master of Physics 2012

Problem 3 (Fundaments of Gen-

eral Relativity)

Motivation Classical Newtonian gravity describes gravita-

tion as a force acting instantaneously at a distance. However,

this framework is incompatible with special relativity, which

asserts that

• The speed of light is finite and invariant.

• Space and time form a unified structure: spacetime.

General Relativity, formulated by Albert Einstein in 1915,

resolves this incompatibility by replacing the concept of grav-

itational force with the geometry of spacetime.

8.7.1 Operators in General Relativity

There are different operators in General Relativity. One of the examples is Christoffel symbols, which

describe how coordinate axes change from point to point. In curved spacetime (or even flat space with
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curved coordinates), basis vectors are not constant, taking an ordinary derivative of a vector does not give

a tensor and we must correct for the “bending”of coordinates.

Definition. 8.2: Christoffel Symbols

Consider a coordinate basis {eµ}. Unlike Cartesian coordinates, these basis vectors generally depend

on position:

∂νeµ 6= 0

We define the Christoffel symbols Γλ
µν by

∂νeµ = Γλ
µνeλ

Theorem. 8.4: Christoffel Symbols

The Christoffel symbols are defined as

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

where ∂µ ≡ ∂

∂xµ
is called the 4-gradient.

Another example is d’Alembertian operator.

Definition. 8.3: d’Alembertian Operator

□ = ∂µ∂
µ =

1

c2
∂2

∂t2
−∇2

A scalar field ϕ(xµ) satisfies the relativistic wave equation

□ϕ = 0

This equation can describe

• Electromagnetic waves

• Gravitational waves

• Massless scalar fields
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For a scalar field of mass m, the equation becomes

(
□+

m2c2

h̄2

)
ϕ = 0

This is the relativistic generalization of the Schrödinger equation.

In general relativity, spacetime is curved, and partial derivatives must be replaced by covariant deriva-

tives. The d’Alembertian becomes the Laplace–Beltrami operator:

□ϕ = ∇µ∇µϕ

In coordinates, this can be written as

□ϕ =
1√
−g

∂µ
(√

−g gµν∂νϕ
)

where g = det(gµν).

8.7.2 Introduction to Spacetime and Differentiable Manifold

In classical physics, space and time are treated as separate entities:

• Space: a three-dimensional Euclidean arena

• Time: a universal parameter flowing identically for all observers

However, experiments involving high velocities and electromagnetic waves reveal that:

• The speed of light is invariant

• Measurements of time and length depend on the observer

These facts force a radical conclusion:

Space and time are not independent; they form a unified structure called spacetime.

In the curved spacetime, we model spacetime as a differentiable manifold M :

• A manifold is a set of points that locally resembles Rn, allowing us to define coordinates in a

neighborhood of each point.

• For spacetime, n = 4 and each point represents an event. An event is something that occurs at a

specific place and time.
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• Smooth functions and tensors can be defined on the manifold, enabling calculus on curved spacetime.

Example. A sphere in Rn is a manifold.

Proof. We introduce some mathematical concepts first:

Definition. 8.4: Stereographic Projection

Stereographic projection is a mapping that projects a sphere onto a plane. Specifically, let Sn ⊂ Rn+1

be the n-dimensional unit sphere, and let N = (0, . . . , 0, 1) be the north pole. The stereographic

projection π : Sn\{N} → Rn is defined by mapping a point P on Sn (excludingN) to the intersection

of the line through N and P with the hyperplane xn+1 = 0:

π(P ) =
1

1− xn+1

(x1, x2, . . . , xn)

where P = (x1, x2, . . . , xn+1) ∈ Sn.

Definition. 8.5: Stereographic Projection

A topological space is a pair (X, T ), where X is a set and T is a collection of subsets of X (called

open sets) satisfying:

1. ∅, X ∈ T ,

2. Any union of elements of T is in T ,

3. Any finite intersection of elements of T is in T .

The collection T is called a topology on X.

Definition. 8.6: Homomorphism

Let X and Y be topological spaces. A function

f : X → Y

is called a homeomorphism if

1. f is a bijection (one-to-one and onto),

2. f is continuous,
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3. the inverse function f−1 : Y → X is also continuous.

If such a map exists, we say X and Y are homeomorphic, meaning they are topologically

equivalent.

Theorem. 8.5: Criteria of a Smooth Manifold

A smooth manifold is a space that is locally homeomorphic to Rn and admits smooth transitions

between overlapping charts. Demonstrating that the stereographic projection is a homeomorphism

ensures that each point on Sn possesses a neighborhood that topologically resembles Rn, which is

important in establishing that Sn is a smooth manifold.

Let

N = (0, . . . , 0, 1), S = (0, . . . , 0,−1)

be the north and south poles of Sn. Define the stereographic projection from the north pole:

πN : Sn \ {N} → Rn

by

πN(x1, . . . , xn+1) =

(
x1

1− xn+1

, . . . ,
xn

1− xn+1

)
As the inverse map is given by

π−1
N (y1, . . . , yn) =

(
2y1

‖y‖2 + 1
, . . . ,

2yn
‖y‖2 + 1

,
‖y‖2 − 1

‖y‖2 + 1

)

and both πN and π−1
N are continuous, πN is a homeomorphism. Similarly, define

πS : Sn \ {S} → Rn

by

πS(x1, . . . , xn+1) =

(
x1

1 + xn+1

, . . . ,
xn

1 + xn+1

)
The two charts

(Sn \ {N}, πN), (Sn \ {S}, πS)

cover Sn. Each component is a rational function of y1, . . . , yn with denominator ‖y‖2, which is nonzero
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on the domain. Hence the transition map πS ◦ π−1
N is smooth. The stereographic charts provide a smooth

atlas covering Sn, and the transition functions are smooth. Therefore, Sn satisfies all the requirements of

a smooth manifold.

8.7.3 Metric Tensor

On this 4-dimensional manifold M, the geometry is described by a metric tensor gµν(x), a smooth, sym-

metric, non-degenerate tensor field:

ds2 = gµν(x)dx
µdxν

where the Einstein’s notation uses Lorentzian signature (−,+,+,+).

Example. In inertial coordinates (t, x, y, z),

ds2 = −c2dt2 + dx2 + dy2 + dz2

which has Lorentzian signature (−,+,+,+).

Locally, at any point p ∈ M, there exists a coordinate system in which the metric reduces to the Minkowski

form ηµν and its first derivatives vanish, reflecting the equivalence principle which states that

Locally, the effects of gravity are indistinguishable from the effects of acceleration.

8.7.4 Geodesics

In General Relativity, free-falling particles follow the straightest possible paths in curved spacetime,

called geodesics:
d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0

In a flat space (Euclidean geometry), the shortest path between two points is a straight line. In a curved

space (like the surface of the Earth), the shortest path is a geodesic.

For timelike geodesics, the proper time τ is the affine parameter λ. For null (lightlike) geodesics, there is

no proper time, but an affine parameter still exists to describe the geodesic.

8.7.5 Riemann Curvature Tensor

Curvature is measured by the Riemann tensor:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ
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Contracting indices yields

Rµν = Rλ
µλν

The Ricci scalar is

R = gµνRµν

8.7.6 Einstein’s Field Equation

The field equations can be written as

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν

where

• Tµν is the stress-energy tensor which describes the density and flux of energy and momentum.

In the weak-field, slow-motion limit:

g00 ≈ −
(
1 +

2Φ

c2

)
Einstein’s equations reduce to Poisson’s equation:

∇2Φ = 4πGρ

Hence, Newtonian gravity emerges as an approximation of General Relativity.

8.7.7 Solution to Einstein’s Field Equation

Schwarzschild solution Einstein’s field equations are

Gµν =
8πG

c4
Tµν

Outside a spherically symmetric gravitating body (e.g. outside a star or black hole), there is no matter or

energy:

Tµν = 0

Hence the field equations reduce to the vacuum Einstein equations:

Gµν = 0
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The most general line element consistent with these symmetries is

ds2 = −e2Φ(r)c2dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θ dϕ2)

where Φ(r) and Λ(r) are unknown functions. Computing the Einstein tensor components for this metric

and imposing Gµν = 0, one obtains the differential equations:

d

dr

(
r(1− e−2Λ)

)
= 0

dΦ

dr
=

1

2r

(
e2Λ − 1

)
Integrating the first equation gives

e−2Λ(r) = 1− C

r

where C is a constant of integration. Substituting this into the second equation and integrating yields

e2Φ(r) = 1− C

r

Thus the spacetime metric becomes

ds2 = −
(
1− C

r

)
c2dt2 +

(
1− C

r

)−1

dr2 + r2dΩ2

where dΩ2 = dθ2 + sin2 θ dϕ2. To determine C, we require that the metric reduces to Newtonian gravity

in the weak-field limit r � C. In Newtonian gravity, the gravitational potential of a mass M is

ΦN(r) = −GM
r

In General Relativity, the weak-field limit gives

gtt ≈ −
(
1 +

2ΦN

c2

)

Comparing with

gtt = −
(
1− C

r

)
we identify

C

r
=

2GM

c2r
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Hence,

C =
2GM

c2

Substituting C =
2GM

c2
, the metric becomes

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dΩ2

This is the Schwarzschild metric. The event horizon occurs where the radial component of the metric

diverges:

g−1
rr = 1− 2GM

c2r
= 0

Solving,

r =
2GM

c2

which is the Schwarzschild radius.

Friedmann–Lemaître–Robertson–Walker Metric It models an expanding universe:

ds2 = −c2dt2 + a(t)2
[

dr2

1− kr2
+ r2dΩ2

]

where dΩ2 = dθ2 + sin2 θdϕ2.

Define χ such that

dχ =
dr√

1− kr2

Integrating gives the relations

r =



1√
k
sin
(√

kχ
)

, k > 1

χ , k = 0

1√
−k

sinh
(√

−kχ
)

, k < −1

=


sin(χ) , k = 1

χ , k = 0

sinh(χ) , k = −1

as k = −1, 0, 1 only. The metric then becomes

ds2 = −c2dt2 + a2(t)
[
dχ2 + S2

k(χ) dΩ
2
]
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By natural unit c = 1,

gµν =



−1 0 0 0

0
a2

1− kr2
0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ


Then

gµν =



−1 0 0 0

0
1− kr2

a2
0 0

0 0
1

a2r2
0

0 0 0
1

a2r2 sin2 θ


The non-zero Christoffel symbols are

Γ0
ij = aȧg̃ij =

ȧ

a
gij

Γi
0j =

ȧ

a
δij

Γr
rr =

kr

1− kr2
, Γr

θθ = −r(1− kr2), Γr
ϕϕ = −r(1− kr2) sin2 θ

Γθ
rθ = Γϕ

rϕ =
1

r

Γθ
ϕϕ = − sin θ cos θ, Γϕ

θϕ = cot θ

Then

R00 = −3
ä

a

Rij =

[
ä

a
+ 2

(
ȧ

a

)2

+
2k

a2

]
gij

R = gµνRµν = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]

For a perfect fluid in comoving coordinates,

Tµν = (ρ+ p)UµUν + pgµν
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with Uµ = (1, 0, 0, 0), so:

Tµν =



ρ 0 0 0

0 pg11 0 0

0 0 pg22 0

0 0 0 pg33


By Rµν −

1

2
gµνR + Λgµν = 8πGTµν ,

−3
ä

a
− 1

2
(−1) · 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
− Λ = 8πGρ

−3
ä

a
+ 3

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
− Λ = 8πGρ

3

(
ȧ

a

)2

+
3k

a2
− Λ = 8πGρ(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3

This is the First Friedmann Equation.[
ä

a
+ 2

(
ȧ

a

)2

+
2k

a2

]
gii −

1

2
gii · 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
+ Λgii = 8πGpgii

ä

a
+ 2

(
ȧ

a

)2

+
2k

a2
− 3

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
+ Λ = 8πGp

−2
ä

a
−
(
ȧ

a

)2

− k

a2
+ Λ = 8πGp

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3

This is the Second Friedmann Equation.

8.7.8 Covariant Derivative

Let V µ be a vector field. Under a coordinate transformation xµ → xµ
′ , the partial derivative

∂νV
µ
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does not transform as a tensor because it produces extra terms involving second derivatives of the coordi-

nate transformation. Hence, ∂νV µ has no invariant geometric meaning. The covariant derivative of a

vector field V µ is defined as

∇νV
µ = ∂νV

µ + Γµ
νλV

λ

For a covector Aµ,

∇νAµ = ∂νAµ − Γλ
νµAλ

More generally, for a (k, l) tensor,

∇ρT
µ1···µk

ν1···νl = ∂ρT
µ1···µk

ν1···νl +
k∑

i=1

Γµi

ρλT
µ1···λ···µk

ν1···νl −
l∑

j=1

Γλ
ρνj
T µ1···µk

ν1···λ···νl

In General Relativity, the covariant derivative is uniquely determined by two conditions:

1. Metric compatibility:

∇λgµν = 0

2. Torsion-free:

Γλ
µν = Γλ

νµ

These conditions yield the Levi–Civita connection:

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) (21)

The covariant derivative measures how a vector changes relative to the curvature of the manifold.

It represents the best possible generalization of directional derivatives to curved spaces.

8.7.9 Lie Derivative

Let ξµ be a smooth vector field on a manifold M. It generates a one-parameter family of diffeomorphisms

(a flow)

ϕλ : M → M

satisfying
d

dλ
ϕλ(p) = ξ

(
ϕλ(p)

)
, ϕ0(p) = p
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For a scalar field f , the Lie derivative along ξµ is simply

Lξf = ξµ∂µf

which coincides with the directional derivative.

Let V µ be a vector field. The Lie derivative of V µ along ξµ is defined as

LξV
µ = ξν∂νV

µ − V ν∂νξ
µ (22)

This expression measures the failure of V µ to be invariant under the flow generated by ξµ. Equation (22)

can be written compactly as

LξV = [ξ, V ]

where [ξ, V ] is the Lie bracket:

[ξ, V ]µ = ξν∂νV
µ − V ν∂νξ

µ (23)

Hence, the Lie derivative of a vector field is the Lie bracket.

8.7.10 Killing Vector Field

A vector field ξµ is called a Killing vector field if the metric remains invariant under the flow generated

by ξµ:

Lξgµν = 0 (24)

where Lξ denotes the Lie derivative. Using properties of the Lie derivative, the Killing condition is

equivalent to

∇µξν +∇νξµ = 0 (25)

This is known as the Killing equation. Equation (25) states that the symmetrized covariant derivative

of ξµ vanishes. Hence, infinitesimal displacements along ξµ preserve the spacetime interval:

ds2 = gµνdx
µdxν

In flat spacetime with metric ηµν :

• Time translation: ξµ = (1, 0, 0, 0)

• Spatial translation: ξµ = (0, 1, 0, 0)
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• Rotation about z-axis: ξµ = (0,−y, x, 0)

Each satisfies the Killing equation. Minkowski spacetime has 10 independent Killing vectors, corre-

sponding to the Poincaré group.

Let uµ be the 4-velocity of a freely falling particle (geodesic):

uν∇νu
µ = 0

If ξµ is a Killing vector, then
d

dτ
(ξµu

µ) = 0 (26)

Proof.

d

dτ
(ξµu

µ) = uν∇ν(ξµu
µ)

= uνuµ∇νξµ + ξµu
ν∇νu

µ

=
1

2
uνuµ(∇νξµ +∇µξν)

= 0

8.7.11 Locally Measured Escape Speed in General Relativity

Consider a static, spherically symmetric spacetime with metric

ds2 = −gtt(r) dt2 + grr(r) dr
2 + r2dΩ2

where gtt(r) > 0. As the metric is time-independent, it admits a timelike Killing vector

Kµ = (∂t)
µ = (1, 0, 0, 0)

Let a particle move along a geodesic with tangent vector

uµ =
dxµ

dλ

If Kµ is a Killing vector, then the quantity

Kµu
µ
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is conserved along the geodesic. We define the conserved energy per unit mass

E ≡ −Kµu
µ

Since Kµ = (1, 0, 0, 0), we have

Kµ = gµνK
ν = (gtt, 0, 0, 0)

and therefore

E = −gttut

For a massive particle, the four-velocity satisfies

uµuµ = −1

For purely radial motion (uθ = uϕ = 0), this gives

−gtt(ut)2 + grr(u
r)2 = −1

Substituting ut = E/gtt, we obtain

−gtt
(
E

gtt

)2

+ grr(u
r)2 = −1

which simplifies to

grr(u
r)2 =

E2

gtt
− 1

A static observer at radius r has four-velocity

Uµ =
1

√
gtt

(1, 0, 0, 0)

The locally measured speed v of the particle is defined by

v2 =
(proper spatial distance)2

(proper time)2 =
grr(u

r)2

gtt(ut)2
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Using the previous results, this becomes

v2 =

E2

gtt
− 1

E2

gtt

= 1− gtt
E2

For a particle that just escapes to infinity in an asymptotically flat spacetime,

gtt(∞) = 1 ur(∞) = 0

The normalization condition then implies

E = 1

Substituting into the expression for v2, we obtain the local escape speed:

v2esc = 1− gtt(r)

For the Schwarzschild metric,

gtt(r) = 1− 2GM

r

Hence,

v2esc =
2GM

r

This is the locally measured escape speed by a static observer using proper rulers and clocks.
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9 Thermodynamics

9.1 Kelvin

Definition. 9.1: Kelvin

The Kelvin (K) is the SI unit of thermodynamic temperature such that

TK = TC + 273.15 (27)

where TC refers to the Celsius scale.

Kelvin must be used when formulas involve energy, ratios, or exponential dependence on temperature.

9.2 Pressure and Hydrostatic Equilibrium

Introduction Pressure is a scalar quantity defined as the force applied per unit area. Mathematically,

P =
F

A

Hydrostatic Equilibrium: Plane-Parallel Case Consider a small cylindrical fluid element of cross-

sectional area A and height dz.

• Gravitational force (downward): The mass of the element is m = ρAdz. Hence,

Fg = mg = ρgAdz

• Pressure force (upward): The pressure at the bottom is P (z), while at the top it is

P (z + dz) = P + dP . The net pressure force is therefore

FP,net = P (z)A− P (z + dz)A = −AdP

For hydrostatic equilibrium, the total force must vanish:

∑
F = 0 =⇒ FP,net − Fg = 0
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Hence,

−AdP − ρgAdz = 0 =⇒ dP

dz
= − ρg

Hydrostatic Equilibrium: Spherical Symmetry (Stars) Now consider a thin spherical shell inside

a star at radius r with thickness dr.

• Gravitational force (inward): The mass of the shell is

dm = ρ(r) dV = ρ(r) 4πr2dr

The gravitational acceleration at radius r is

g(r) =
GM(r)

r2

where M(r) is the mass enclosed within radius r. Hence, the inward gravitational force is

Fg = dmg(r) = 4πGρ(r)M(r) dr

• Pressure force (outward): The surface area of the shell is A = 4πr2. The net pressure force is

the difference between the outward pressure at r and that at r + dr:

FP,net = P (r)A− P (r + dr)A = − dP

dr
· 4πr2dr

Hydrostatic equilibrium requires

∑
F = 0 =⇒ FP,net − Fg = 0

Therefore,

−dP
dr

4πr2dr − 4πGρ(r)M(r) dr = 0

which yields the stellar hydrostatic equilibrium equation:

dP

dr
= − GM(r)ρ(r)

r2
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Remark. In addition to hydrostatic equilibrium, stars also satisfy thermal equilibrium, meaning that

the energy generated in the core equals the energy radiated from the surface:

Lcore = Lsurface

where L denotes the luminosity. Stellar equilibrium refers to the combined balance of gravitational, pres-

sure, and energy-transport processes that allow a star to maintain a stable structure over long timescales.

9.3 Ideal Gas Law

The Ideal Gas Law is a fundamental equation in thermodynamics that describes the behavior of an ideal

gas. It establishes a relationship between the pressure P , volume V , temperature T , and the number of

moles of gas n. The equation is expressed as

PV = nRT

where

• P is the pressure of the gas,

• V is the volume of the gas,

• n is the number of moles of gas,

• R is the universal gas constant (R = 8.314 J/mol K),

• T is the temperature of the gas in Kelvin.

For a gas undergoing a change in volume at constant pressure, the work done by the gas is given by

W = P∆V

9.4 First Law of Thermodynamics

It states that energy cannot be created or destroyed, only transformed. It is expressed mathematically as

dU = δQ− δW

where
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• dU is the change in internal energy of the system,

• δQ is the heat added to the system,

• δW is the work done by the system.

∆U

system

Q W

Process Condition Description

Adiabatic δQ = 0 No heat exchange with surroundings;

temperature changes due to work done

Isothermal T = constant Temperature remains constant; heat

absorbed equals work done

Isobaric P = constant Pressure remains constant; volume

changes with temperature

Isochoric (Isovolumetric) V = constant No work done since volume is constant;

heat changes internal energy

Polytropic PV n = constant Generalized process covering isother-

mal, adiabatic, and isobaric cases

Cyclic Final state = Initial state Net change in internal energy over one

cycle is zero

Reversible Quasi-static with no losses Idealized process that delivers maxi-

mum possible work

Irreversible Finite gradients and friction Real processes; entropy production is

positive

Table 2: Thermodynamic processes, their conditions, and descriptions
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9.5 Second Law of Thermodynamics

Definition. 9.2: Entropy

Entropy is a measure of the disorder or randomness of a system. For a reversible process, the change

in entropy dS is given by the heat transferred dQ divided by the temperature T :

dS =
dQrev

T

Theorem. 9.1: Sackur–Tetrode Equation

S = NkB

(
ln
(
V

N

(
4πmE

3h2

)3/2
)

+
5

2

)
where

• S is the entropy,

• N is the number of particles,

• V is the volume,

• m is the mass of a gas particle, and

• E is the internal energy

Theorem. 9.2: Second Law of Thermodynamics

The second law of thermodynamics states that the entropy of an isolated system tends to increase

over time.

dS ≥ 0

Theorem. 9.3: Gibbs Free Energy

The Gibbs free energy G is related to entropy through the following equation:

G = H − TS = U + PV − TS

where H is the enthalpy, T is the temperature (kept constant), P is the pressure (kept constant),

and S is the entropy.
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9.6 Heat Capacity

Definition. 9.3: Heat Capacity

The heat capacity at constant volume, CV , is defined as the amount of heat required to raise the

temperature of a system by one degree Celsius (or one Kelvin) while maintaining constant volume.

Mathematically, it is expressed as

CV =

(
∂Q

∂T

)
V

where Q is the heat added to the system, and T is the temperature. The subscript V indicates that

the volume is held constant.

Since the system is not allowed to do any work (because the volume is fixed), the heat added to the system

only changes the internal energy:

dQ = dU

where dU is the change in internal energy.

For an ideal gas, the heat capacity at constant volume is related to the molar heat capacity CV by

CV =

(
∂U

∂T

)
V

For an ideal gas, the internal energy U is a function of temperature alone, and the specific heat capacity

can be derived from the equation of state.

Definition. 9.4: Heat Capacity

The heat capacity at constant pressure, CP , is defined as the amount of heat required to raise the

temperature of a system by one degree Celsius (or one Kelvin) while maintaining constant pressure.

Mathematically, it is expressed as

CP =

(
∂Q

∂T

)
P

where Q is the heat added to the system, and T is the temperature. The subscript P indicates that

the pressure is held constant.

In contrast to constant volume, when heat is added at constant pressure, the system may do work as it

expands. Therefore, the total heat added is the sum of the change in internal energy and the work done

by the system

dQ = dU + PdV
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For an ideal gas, the heat capacity at constant pressure is related to the molar heat capacity CP by

CP =

(
∂H

∂T

)
P

Theorem. 9.4: Mayer’s Relation

cP − cV = nR

where n is the number of moles of the gas and R is the universal gas constant.

Proof. By the first law of thermodynamics,

dU = δQ− pdV = nCV dT

where CV is the heat capacity at constant volume, and n is the number of moles. For the heat added at

constant pressure, we use:

δQ = nCPdT

where CP is the heat capacity at constant pressure.

By the ideal gas equation of state,

pV = nRT

Differentiating this equation with respect to temperature at constant pressure:

pdV + V dp = nRdT

At constant pressure, dp = 0, so we have:

pdV = nRdT

Substitute pdV = nRdT into the equation:

nCV dT = nCPdT − nRdT

CV = CP −R =⇒ CP − CV = nR
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Definition. 9.5: Heat Capacity Ratio

γ =
Cp

CV

In an adiabatic process, there is no heat exchange with the surroundings (dQ = 0). The first law of

thermodynamics gives:

dU = −PdV

For an ideal gas, the relationship between pressure and volume during an adiabatic process is governed by

the equation:

PV γ = constant

9.7 Blackhole Thermodynamics

Black hole entropy is a measure of the amount of information that is hidden inside a black hole. The

famous Bekenstein-Hawking entropy formula links the entropy of a black hole to the area of its event

horizon, rather than its volume. This result was first derived by Jacob Bekenstein and later confirmed by

Stephen Hawking:

S =
kBc

3A

4Gh̄

Proof. The first law of black hole thermodynamics is given by

dM = TdS + ΦdQ+ ΩdJ

where M is the mass, T is the temperature, S is the entropy, Φ is the electrostatic potential, Q is the

charge, and J is the angular momentum.

For a non-rotating, uncharged Schwarzschild black hole, the first law reduces to

dM = TdS

which is similar to the first law of thermodynamics, and implies that the black hole mass is related to its

entropy via its temperature. The area of the event horizon is

A = 16π

(
GM

c2

)2
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Using the fact that the temperature T of a Schwarzschild black hole is given by the Hawking temperature,

T =
h̄c3

8πGM
(The derivation is out of scope of this note.)

The first law dM = TdS implies

dS =
dM

T
=

dM
h̄c3

8πGM

=
8πGM

h̄c3
dM

Integrating with respect to M ,

S =
8πGM 2

h̄c3

Using the expression for the area A = 16π

(
GM

c2

)2

,

M =
c2
√
A

4πG

Substituting this into the entropy expression, we get

S =
kBc

3A

4Gh̄

9.8 Kinetic Theory

9.8.1 Mean Free Path

Let the number density of the gas (the number of particles per unit volume) be n, and let the cross-sectional

area for a collision between two particles be σ. The cross-sectional area σ depends on the type of collision

and the physical properties of the particles involved. If we assume spherical particles with radius r, the

collision cross-section is given by

σ = π(2r)2 = 4πr2

Next, the relative velocity between two particles in the gas is on the order of the mean speed of the particles

vavg. The total rate of collisions per unit time per particle is

Collision rate = nσvavg
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The mean free path λ is defined as the average distance a particle travels before undergoing a collision.

The relationship between the mean free path and the collision rate is given by

λ =
1

Collision rate =
1

nσvavg
=

1

n · 4πr2 · vavg

9.8.2 Boltzmann Distribution and Maxwell–Boltzmann Distribution

The Boltzmann distribution, also known as the Gibbs distribution, is a fundamental probability distribu-

tion in statistical mechanics that describes the statistical properties of a system in thermal equilibrium

at a fixed temperature. It provides the probability that a system will be in a particular microstate with

energy Ei when it is in contact with a heat bath at temperature T .

Formulation and Derivation Consider a system in thermal equilibrium with a large reservoir at

constant temperature T . The probability Pi of finding the system in a particular microstate i with energy

Ei is given by

Pi =
1

Z
e−βEi

where

• β =
1

kBT
is the thermodynamic beta

• Z =
∑
i

e−βEi is the partition function

The partition function Z serves as a normalization constant ensuring that
∑
i

Pi = 1. It contains all

thermodynamic information about the system.

Proof. Statistical mechanics often uses the principle of maximum entropy. The entropy of a discrete set

of probabilities {Pi} is

S = −kB
∑
i

Pi lnPi

as S = kB lnΩ (where Ω is the number of micro-states by Statistical Mechanics). We want to maximize S

subject to the constraints:

∑
i

Pi = 1 (normalization)

∑
i

PiEi = 〈E〉 (average energy fixed)
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Using Lagrange multipliers α and β, define

L = −kB
∑
i

Pi lnPi − α

(∑
i

Pi − 1

)
− β

(∑
i

PiEi − 〈E〉

)

Setting the derivative with respect to Pi to zero:

∂L
∂Pi

= −kB(lnPi + 1)− α− βEi = 0

which gives

Pi = e−1−α/kBe−βEi/kB

Defining Z = e1+α/kB =
∑
i

e−βEi/kB , we get the familiar form:

Pi =
e−βEi

Z

Maxwell-Boltzmann Distribution The Maxwell–Boltzmann distribution describes the statistical dis-

tribution of speeds (or velocities) of particles in an ideal gas at thermal equilibrium. It is a special case of

the Boltzmann distribution applied to the translational kinetic energy of non-interacting particles.

For an ideal gas of N identical particles of mass m at temperature T , the probability density function for

finding a particle with velocity v = (vx, vy, vz) is

f(v) =
(

m

2πkBT

)3/2

exp
(
−m|v|2
2kBT

)

This three-dimensional distribution factorizes as f(v) = f(vx)f(vy)f(vz), where each component distribu-

tion is Gaussian

f(vα) =

√
m

2πkBT
exp

(
− mv2α
2kBT

)
, α = x, y, z

More commonly used is the distribution of speeds v = |v|, obtained by integrating over all directions in

velocity space:

f(v) = 4πv2
(

m

2πkBT

)3/2

exp
(
− mv2

2kBT

)
The factor 4πv2 arises from the spherical shell volume element in velocity space.

Proof. Consider an ideal gas with N particles in thermal equilibrium at temperature T . Each particle

has a mass m and a velocity vector v = (vx, vy, vz). The total energy of a particle is purely kinetic:
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E =
1

2
m(v2x + v2y + v2z)

According to the Boltzmann distribution, the probability of a particle having energy E is

P (E) ∝ e−E/kBT

Note that

P (vx, vy, vz) = f(vx)f(vy)f(vz)

f(vi) = Ae−
1
2
mv2i /kBT , i = x, y, z

As ˆ ∞

−∞
f(vx) dvx = 1,

ˆ ∞

−∞
Ae

− mv2x
2kBT dvx = 1

and by ˆ ∞

−∞
e−ax2

dx =

√
π

a

we have

A

√
2πkBT

m
= 1 =⇒ A =

√
m

2πkBT

Hence,

f(vi) =

√
m

2πkBT
e
− mv2i

2kBT

The speed of a particle is

v =
√
v2x + v2y + v2z

The probability density function of speeds, F (v), can be obtained by transforming to spherical coordinates

in velocity space:

F (v)dv = 4πv2f(vx)f(vy)f(vz)dv

Hence,

F (v) = 4π

(
m

2πkBT

)3/2

v2e
− mv2

2kBT

Three important characteristic speeds are derived from this distribution:
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1. Most probable speed (mode):

vmp =

√
2kBT

m
=

√
2RT

M

2. Mean speed:

〈v〉 =
√

8kBT

πm
=

√
8RT

πM

3. Root-mean-square speed:

vrms =

√
3kBT

m
=

√
3RT

M

where R = NAkB is the gas constant and M = NAm is the molar mass.

9.9 Boundary Conditions

Solving the stellar structure equations requires proper boundary conditions:

• At the Center (r = 0):

M(0) = 0, L(0) = 0

• At the Surface (r = R):

P (R) = Psurface ≈ 0, T (R) = Teff

These conditions ensure the solution matches physical reality: zero mass at the center, and finite temper-

ature and pressure at the surface.
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9.10 Case Study

x

y

z

r

r sin θdϕ

ϕ dϕ

θ dθ

dr
rdθ

Suppose a static spherical star consists of N neutral particles with radius R with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,

satisfying the following equation of states

PV = Nk
TR − T0
ln(TR/T0)

(1)

where P and V are the pressure inside the star and the volume of the star respectively, k is the Boltzmann

constant, TR and T0 are the temperatures at the surface r = R and the temperature at the center r = 0

respectively. Assume that TR ≤ T0.

(a) Simplify the stellar equation of state (1) if ∆T = TR − T0 → 0 (this is called ideal star) (Hint: Use

the approximation ln(1 + x) ≈ x for small x).

Suppose the star undergoes a quasi-static process, in which it may slightly contract or expand, such

that the above stellar equation of state (1) still holds.

The star satisfies the first law of thermodynamics:

Q = ∆Mc2 +W (2)

where Q, M , and W are heat, mass of the star, and work respectively, while c is the light speed in

the vacuum and ∆M =Mfinal −Minitial.
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In the following, we assume T0 to be constant, while TR ≡ T varies.

(b) Find the heat capacity of the star at constant volume CV and at constant pressure CP , expressed in

CP and CV (Hint: Use the approximation (1 + x)n ≈ 1 + nx for small x).

Assuming that CP is constant and the gas undergoes the isobaric process so the star produces the

heat and radiates it outside to the space.

(c) Find the heat produced by the isobaric process if the initial temperature and the final temperature

are Ti and Tf , respectively.

(d) For the next parts, assume the star is the Sun.

(e) If the sunlight is monochromatic with frequency 5×1014 Hz, estimate the number of photons radiated

by the Sun per second.

(f) Calculate the heat capacity CP of the Sun assuming its surface temperature varies from 5500 K to

6000 K in one second.

Solution.

(a) Defining ∆T = Tf − T0 and ∆T ≈ 0, we have

P∆V

Nk
=

∆T

ln(1 + ∆T/T0)

Using ln(1 + ∆T/T0) ≈ ∆T/T0, we then obtain

P∆V

Nk
= T0

(b) The internal energy of the star is U = Mc2(U(T ) = M(T )c2 for ideal star). Hence, the constant

volume heat capacity of the star has the form:

CV =

(
∆Q

∆T

)
V

=

(
∆M

∆T

)
V

c2

for small ∆T . Then, using first law of thermodynamics, the constant pressure heat capacity of the

star is

CP =

(
∆Q

∆T

)
P

=

(
∆M

∆T

)
V

c2 + P
∆V

∆T
= CV + P

∆V

∆T
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for small ∆T . Defining ∆T = T2 − T1, then

P∆V

Nk
=

T1 − T0 +∆T

ln((T1 +∆T )/T0)
− T1 − T0

ln(T1/T0)

Using the approximation

ln((T1 +∆T )/T0) ≈ ln
(
T1
T0

)
+

∆T

T1

1

ln((T1 +∆T )/T0)
≈ 1

ln(T1/T0)
− 1

T1 ln(T1/T0)2
∆T

T1

then we have
P∆V

∆T
≈ Nk

(
1− 1

ln(T/T0)

)
(T − T0)/T

ln(T/T0)

where T1 = T . Finally, we obtain

CP =

(
∆Q

∆T

)
P

=

(
∆M

∆T

)
V

c2 + P
∆V

∆T
= CV +

Nk

ln(T/T0)

(
1− (T − T0)/T

ln(T/T0)

)

(c) Since CV is constant, the heat produced by the star is given by

QH = CV (Tf − Ti) + P∆V

QH = CV (Tf − Ti) +Nk

[
Tf − T0
ln(Tf/T0)

− Ti − T0
ln(Ti/T0)

]
(d) Energy per second radiated by the Sun Ė = L⊙ = Nhν where N is the number of photons. Hence

N =
L⊙

hν
=

3.90× 1026

6.626× 10−34 × 5× 1014
= 1.195× 1045 photons

(e) Energy per second radiated by the Sun is proportional to mass defect of the Sun

L⊙ =
∆Mc2

∆t

Hence,

CV =
∆Mc2

L⊙
=

3.96× 1026

∆T

1
L⊙
∆t

≈ 3.96× 1026

6000− 5500
J/K = 7.92× 1023 J/K
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10 Spectroscopy

10.1 Basic Concepts

• (Spectrum) The diffraction of light produces a spectrum, which can be observed as a series of

bright and dark fringes.
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10−310−310−310−310−310−310−310−310−310−310−310−310−310−310−310−310−3
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10−110−110−110−110−110−110−110−110−110−110−110−110−110−110−110−110−1
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thermal
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Gamma

rays
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Ultra-

violet

radio waves
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rays

0.38 0.48 0.58 0.68 0.78

blue green yellow red

Visible Spectrum

• (Absorption) Absorption occurs when atoms or molecules in a celestial object absorb photons of

specific energies, raising electrons to higher energy levels.

• (Emission) Emission occurs when excited electrons drop to lower energy levels, releasing photons

of specific energies, forming emission lines.

Ephoton = Eupper − Elower

This leads to absorption lines in the spectrum.

(4) Spectral lines reveal chemical composition, temperature, pressure, and velocity fields (via Doppler

shifts).

(5) (Scattering) Scattering occurs when photons interact with particles, changing direction and some-

times energy:
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– Rayleigh scattering: Elastic scattering by particles much smaller than wavelength.

– Thomson scattering: Elastic scattering by free electrons.

– Compton scattering: Inelastic scattering, photon loses energy. There is a relation derived

by Compton:

λ′ − λ =
h

mec
(1− cos θ)

where

(i) λ is the initial wavelength of the photon,

(ii) λ′ is the wavelength of the scattered photon,

(iii) h is Planck’s constant,

(iv) me is the mass of the electron,

(v) c is the speed of light,

(vi) θ is the scattering angle, which is the angle between the direction of the incident and

scattered photon.

(6) (Splitting) Splitting occurs when a single spectral line divides into multiple components due to

external or internal interactions. The Zeeman effect is the splitting of spectral lines in the presence

of a magnetic field B. For transitions with no spin, a single spectral line splits into three components:

∆E = mlµBB, ml = 0,±1

where µB is the Bohr magneton, B is the magnetic field strength, and ml is the magnetic quantum

number.

The Stark effect is the splitting of spectral lines due to an external electric field E:

∆E ∝ E

(7) (Broadening) Broadening refers to the widening of spectral lines beyond their natural linewidth.

– Due to the finite lifetime τ of excited states, spectral lines have an intrinsic width governed by

the uncertainty principle.

– Stellar rotation causes line broadening due to different Doppler shifts across the stellar disk.
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10.2 Spectral Radiance

The spectral radiance (power emitted per unit area per unit solid angle per unit wavelength) is given by

Planck’s law:

Bλ(T ) =
2hc2

λ5
1

ehc/(λkBT ) − 1

where λ is the wavelength.

Astronomy has evolved from visible-light observations to encompass the entire electromagnetic (EM)

spectrum. Each wavelength band reveals unique astrophysical phenomena, as expressed by Planck’s law.

Band Wavelength

Range

Energy Range Temperature (K) Primary Sources

Radio > 10 cm < 1.24× 10−5 eV < 0.1 Cold gas, pulsars

Microwave 1mm – 10 cm 1.24 × 10−5 eV –

1.24× 10−3 eV

0.1 – 10 CMB, molecular

clouds

Infrared 700 nm – 1mm 1.24 × 10−3 eV –

1.77 eV

10 – 104 Dust, planets, cool

stars

Visible 400 nm – 700 nm 1.77 eV – 3.1 eV 104 Stars, galaxies, neb-

ulae

Ultraviolet 10 nm – 400 nm 3.1 eV – 124 eV 104 – 105 Hot stars, quasars

X-ray 0.01 nm – 10 nm 124 eV – 124 keV 105 – 108 Black holes, super-

novae

Gamma-ray < 0.01 nm > 124 keV > 108 GRBs, nuclear pro-

cesses

Figure 8: Electromagnetic spectrum bands in astronomy

Limiting cases:

• Rayleigh-Jeans Law (long wavelengths, hc� λkBT ):

Bλ(T ) ≈
2ckBT

λ4
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• Wien’s Law (short wavelengths, hc� λkBT ):

Bλ(T ) ≈
2hc2

λ5
e−hc/(λkBT )

The wavelength at which the emission is maximum:

λmaxT ≈ 2.898× 10−3m K (Wien’s Displacement Law)

10.3 Stefan–Boltzmann law

j∗ = σT 4

where

• j∗ is the total radiative flux (power per unit area, (W/m2)),

• T is the absolute temperature of the blackbody in Kelvin (K),

• σ is the Stefan–Boltzmann constant:

σ = 5.670374419× 10−8 Wm−2K−4

For a real object with emissivity (ϵ) (0 ≤ ϵ ≤ 1), the law generalizes to

j = ϵσT 4

Proof. The total radiated power per unit area is obtained by integrating over all frequencies and solid

angles from Planck’s law:

j∗ =

ˆ ∞

0

ˆ
Ω

B(ν, T ) cos θdΩdν

= π

ˆ ∞

0

B(ν, T )dν

Page 147 / 259



10 SPECTROSCOPY By Pika and Owen

Let x =
hν

kBT
.

j∗ =
2πh

c2

ˆ ∞

0

ν3

ehν/kBT − 1
dν

=
2π(kBT )

4

h3c2

ˆ ∞

0

x3

ex − 1
dx

The integral evaluates to π
4

15
, giving

j∗ = σT 4, σ =
2π5k4B
15h3c2

10.4 Doppler’s Effect

The Doppler effect is a fundamental phenomenon in wave physics where the observed frequency of a

wave changes due to relative motion between the source and observer.

For non-relativistic speeds (v � c), where c is the speed of light:

fobs =
fsrc

1± vs
c

(Source Moving, Observer Stationary)

where + for receding source, − for approaching source.

fobs = fsrc

(
1± vo

c

)
(Observer Moving, Source Stationary)

In astrophysics, we typically measure the radial velocity vr through the wavelength shift:

∆λ

λ0
=
λobs − λ0

λ0
=
vr
c

where

• λ0 represents the rest wavelength,

• λobs represents the observed wavelength, and

• vr represents the radial velocity which is the motion of a star along the line of sight.1 (positive for

recession)

1 The total velocity of a star is given by v =
√

v2radial + v2tangential where vradial is the radial velocity, and vtangential is
the tangential velocity, which can be derived from proper motion and distance. Proper motion refers to the angular
movement of a star across the sky, usually measured in arcseconds per year.
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For astronomical objects moving at significant fractions of light speed, we must use the relativistic formula:

λobs

λ0
=

√
1 + β

1− β
or fobs

f0
=

√
1− β

1 + β

The redshift z is defined as

z =
λobs − λ0

λ0
=

∆λ

λ0

For relativistic speeds,

1 + z =

√
1 + β

1− β
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11 Electromagnetism

11.1 Lorentz’s Force

The Lorentz force law describes the force exerted on a charged particle moving through an electromagnetic

field. It is given by

F = q(E + v × B)

• F is the force on the charged particle,

• q is the charge of the particle,

• E is the electric field,

• v is the velocity of the particle, and

• B is the magnetic field.

11.2 Maxwell’s Equation

Definition. 11.1: Del Operator

For continuously differentiable vector field F = Fxi + Fyj + Fzk, define ∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
. Then

∇ · F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
and ∇× F =

(
∂Fz

∂y
− ∂Fy

∂z

)
i +
(
∂Fx

∂z
− ∂Fz

∂x

)
j +
(
∂Fy

∂x
− ∂Fx

∂y

)
k

which ∇ ·F measures the net flow of the field out of an infinitesimally small volume around a point.

Theorem. 11.1: Differential Form of Maxwell’s Equation

For free charge density ρ (S.I. unit: C/m3) and free current density J (S.I. unit: A/m2),

∇ · E =
ρ

ϵ0
(Gauss’s Law for Electricity)

∇ · B = 0 (Gauss’s Law for Magnetism)

∇× E = −∂B
∂t

(Faraday’s Law of Induction)

∇× B = µ0J + µ0ϵ0
∂E
∂t

(Ampère-Maxwell Law)
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Theorem. 11.2: Integral Form of Maxwell’s Equation

For free charge density ρ and free current density J, the Maxwell’s equations in integral form are:

ˆ
S

E · dA =
1

ϵ0

ˆ
V

ρ dV (Gauss’s Law for Electricity)
ˆ
S

B · dA = 0 (Gauss’s Law for Magnetism)
˛
C

E · dl = − d

dt

ˆ
S

B · dA (Faraday’s Law of Induction)
˛
C

B · dl = µ0

ˆ
S

J · dA + µ0ϵ0
d

dt

ˆ
S

E · dA (Ampère-Maxwell Law)

11.3 Poynting Vector

The Poynting vector describes the directional energy flux (the energy transfer per unit area per unit time)

or power flow of an electromagnetic field. It is given by

S =
1

µ0

E × B

where

• S is the Poynting vector,

• E is the electric field, and

• B is the magnetic field.

11.4 Optics

11.4.1 Wavefunction

The displacement of a point on a string in simple harmonic motion can be modeled by a sinusoidal function.

The solution to the wave equation for a string under tension is:

ϕ(x, t) = A sin(kx− ωt+ δ)

where

• A is the amplitude of the wave,
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• k =
2π

λ
is the wave number (with λ being the wavelength),

• ω = 2πf is the angular frequency (with f being the frequency), and

• δ is a phase constant.

11.4.2 Lens

Theorem. 11.3: Refractive Index

The refractive index of a medium is defined as the ratio of the speed of light in vacuum to the

phase velocity of light in the medium:

n ≡ c

v

Without free charge, Ampère’s law states that

∇× B = µε
∂E
∂t

Take the curl of Faraday’s law:

∇× (∇× E) = − ∂

∂t
(∇× B)

Substituting the expression for ∇× B yields

∇× (∇× E) = −µε∂
2E
∂t2

Using the vector identity

∇× (∇× E) = ∇(∇ · E)−∇2E

and Gauss’s law, we obtain

−∇2E = −µε∂
2E
∂t2

∇2E = µε
∂2E
∂t2

The standard wave equation for a field E propagating with speed v is

∇2E =
1

v2
∂2E
∂t2
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Comparing with the equation above, we identify

1

v2
= µε

Therefore, the speed of electromagnetic waves in the medium is

v =
1

√
µε

For speed of light, c =
1

√
ϵ0µ0

. Then n =
√
ϵrµr where ϵr =

ϵ

ϵ0
is the relative permittivity (dielectric

constant) of the medium and µr =
µ

µ0

is the relative permeability of the medium. For µr ≈ 1, n ≈
√
ϵr.

Theorem. 11.4: Snell’s Law

Consider an interface between two homogeneous, isotropic media with refractive indices n1 and n2.

Let θ1 and θ2 denote the angles that the incident and refracted rays make with the normal to the

interface, respectively. Snell’s law states that

n1 sin θ1 = n2 sin θ2

Theorem. 11.5: Lens Formula

1

f
=

1

v
+

1

u

where

• f is the focal length of the lens, which is the distance from the optical element (lens or mirror)

to the point where light converges to form an image and determines the magnification and

field of view of the telescope,

• u is the object distance (distance from the object to the lens), and

• v is the image distance (distance from the lens to the image).

The most widely used convention is the Cartesian sign convention:
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Parameter Sign Convention

Object distance (u) Negative (for real objects)

Image distance (v) Positive (for real images)

Negative (for virtual images)

Focal length (f) Positive (for convex/ converging lenses)

Negative (for concave/ diverging lenses)

Height of object (ho) Positive (upward from principal axis)

Height of image (hi) Positive (upward from principal axis)

Negative (downward from principal axis)

Table 3: Sign conventions for lens formula

Definition. 11.2: Optical Power

For a lens with focal length f , the power is given by

P =
1

f

Theorem. 11.6: Combination of Thin Lens

For two or more thin lenses close together, the effective power is given by
∑

P .

Theorem. 11.7: Lens Maker’s Equation

1

f
= (n− 1)

[
1

R1

− 1

R2

+
(n− 1)d

nR1R2

]
where

• f is the focal length of the lens,

• n is the refractive index of the lens material,

• R1 is the radius of curvature of the first surface of the lens,

• R2 is the radius of curvature of the second surface of the lens,
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• d is the thickness of the lens.

Proof. We will derive the case of thin lens where d→ 0.

Consider a spherical refracting surface with radius of curvature R separating two media with refractive

indices n1 and n2. Let C be the center of curvature and V be the vertex of the spherical surface. We

use the sign convention:

• Distances measured from V

• R > 0 if C is to the right of V (convex toward object)

• Object distance u = −so (negative if object is left of V )

• Image distance v = si (positive if image is right of V )

Using the paraxial (small-angle) approximation:

sin θ ≈ θ, tan θ ≈ θ

for rays making small angles with the optical axis.

Consider a point object O on the optical axis, sending a ray to point A on the spherical surface at height

h above the axis. From triangle OAC,

Angle of incidence: θ1 = α + ϕ

From triangle IAC,

Angle of refraction: θ2 = ϕ− β

where

α ≈ h

−u
, β ≈ h

v
, ϕ ≈ h

R

with u = −so < 0, v > 0, and R as given.

Snell’s law in paraxial form:

n1θ1 = n2θ2

Substituting:

n1(α + ϕ) = n2(ϕ− β)
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n1

(
h

−u
+
h

R

)
= n2

(
h

R
− h

v

)

n1

(
1

−u
+

1

R

)
= n2

(
1

R
− 1

v

)
Rewriting with Cartesian sign convention (u = −so, v = si, R signed):

n2

v
− n1

u
=
n2 − n1

R

Consider a thin lens of refractive index nl surrounded by medium nm. The lens has:

• First spherical surface: radius R1 (center C1)

• Second spherical surface: radius R2 (center C2)

• Thickness negligible compared to object/image distances (thin lens approximation)

Sign convention:

• Light travels left to right

• R > 0 if center of curvature is to the right of surface

• Object distance so > 0 (real object left of lens)

• Image distance si > 0 (real image right of lens)

From medium 1 nm to medium 2 nl,
nl

v1
− nm

(−so)
=
nl − nm

R1

Since u1 = −so,
nl

v1
+
nm

so
=
nl − nm

R1

(*)

From medium 1 nl to medium 2 nm, the object for second surface is the image from first surface. For thin

lens, object distance is −v1.
nm

si
− nl

(−v1)
=
nm − nl

R2

nm

si
+
nl

v1
=
nm − nl

R2

(**)

From (*), nl

v1
=
nl − nm

R1

− nm

so
. From (**), nl

v1
=
nm − nl

R2

− nm

si
. Equating both expressions for nl

v1
and

simplifying gives
nm

so
− nm

si
= (nl − nm)

(
1

R2

− 1

R1

)
Page 156 / 259



11 ELECTROMAGNETISM By Pika and Owen

For si = f (image at focal point),
1

f
=
nl − nm

nm

(
1

R1

− 1

R2

)
Let nm = 1 and nl = n.

1

f
= (n− 1)

(
1

R1

− 1

R2

)

11.5 Diffraction and Interference

11.5.1 Principle of Superposition

The principle of superposition states that when two or more waves overlap in space, the resultant

displacement at any point is equal to the algebraic sum of the individual displacements at that point. Let

two harmonic waves be given by

y1(x, t) = A1 sin(kx− ωt+ ϕ1)

y2(x, t) = A2 sin(kx− ωt+ ϕ2)

According to the principle of superposition, the resultant wave is

y(x, t) = y1(x, t) + y2(x, t)

= A1 sin(kx− ωt+ ϕ1) + A2 sin(kx− ωt+ ϕ2)

Using the trigonometric identity

sinα + sin β = 2 sin α + β

2
cos α− β

2

we get

y(x, t) = 2A cos
(
ϕ2 − ϕ1

2

)
sin
(
kx− ωt+

ϕ1 + ϕ2

2

)

where A is the effective amplitude.

• Constructive interference occurs when ϕ2 − ϕ1 = 2nπ.

• Destructive interference occurs when ϕ2 − ϕ1 = (2n+ 1)π.
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11.5.2 Complex Number

Recall that a complex number z is written as

z = x+ iy

where x is the real part, y is the imaginary part, and i =
√
−1.

Theorem. 11.8: Euler’s Formula

eiθ = cos θ + i sin θ

This is extremely useful in wave physics because oscillating quantities like A cos(ωt+ ϕ) can be represented

as the real part of a complex exponential:

A cos(ωt+ ϕ) = R(Aei(ωt+ϕ))

11.5.3 Young’s Double-Slit Experiment

Consider two slits separated by distance d illuminated by coherent light of wavelength λ. At a point on

a screen at distance L, the path difference (which is defined as the difference in the distance traveled by

two waves from their respective sources to a common point.) is

δ = d sin θ

where θ is the angle from the central maximum.

The condition for constructive interference (bright fringes) is

d sin θ = mλ, m = 0,±1,±2, . . .

For destructive interference (dark fringes),

d sin θ =
(
m+

1

2

)
λ
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For small angles, sin θ ≈ tan θ = x

L
, where x is the fringe displacement. Then the fringe width is

∆x =
λL

d

11.5.4 Single-Slit Diffraction

Diffraction refers to the bending of waves around obstacles and apertures. Consider a slit of width a. The

condition for minima in the diffraction pattern is

a sin θ = mλ, m = ±1,±2, . . .

The central maximum is twice as wide as the secondary maxima. The intensity at angle θ is given by

I(θ) = I0

(
sin(β)
β

)2

, β =
πa sin θ

λ

11.5.5 Rayleigh’s Criteria

Two point sources are said to be just resolved if the central maximum of one diffraction pattern coincides

with the first minimum of the other. The Rayleigh criterion gives the limit at which two point sources can

be resolved:

θR = 1.22
λ

D

Proof. Consider a circular aperture of diameter D. For monochromatic light of wavelength λ, the far-field

(Fraunhofer) diffraction pattern of a point source is the Airy pattern, whose intensity is given by

I(θ) = I0

[
2J1(ka sin θ)
ka sin θ

]2
where a = D/2, k = 2π/λ, J1 is called the Bessel function of the first kind of order 12, and θ is the angular

distance from the optical axis.

The first zero of J1(x) occurs at x ≈ 3.8317. Let x = ka sin θ. Then

ka sin θmin = 3.8317 =⇒ 2πa

λ
sin θmin = 3.8317

2 which is the solution to x2 d
2y

dx2
+ x

dy

dx
+ (x2 − 1)y = 0 in the form of J1(x) =

∞∑
m=0

(−1)m

m! Γ(m+ 2)

(x
2

)2m+1

where

Γ(z) =

ˆ ∞

0

xz−1e−x dx for R(z) > 0
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Hence,

sin θmin ≈ 3.8317λ

2π(D/2)
≈ 1.22λ

D

For small angles (θ in radians),

θmin ≈ 1.22λ

D

This θmin is the angular radius of the Airy disk (to the first dark ring).

11.6 Polarization

11.6.1 Introduction

Polarization describes the direction in which the electric field vector of a light wave oscillates. Light can

be

• Unpolarized: The electric field points in random directions (like sunlight).

• Linearly polarized: The electric field oscillates in a single direction.

• Circularly polarized: The electric field rotates in a circle as light travels.

• Elliptically polarized: A general case where the electric field traces an ellipse.
v

unpolarized
polarizer

linearly polarized
E0

analyzer
linearly polarized

E0 cos θ

There are some methods for polarization:

• Polarization by Reflection: When light is reflected at a certain angle (Brewster’s angle, θB), the

reflected light becomes completely polarized:

tan θB =
n2

n1

where n1 and n2 are refractive indices of the two media.
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• Polarization by Absorption: Polarizing filters only allow electric field components in a particular

direction to pass through. When linearly polarized light passes through a polarizing filter, the

transmitted intensity I is given by

I = I0 cos2 θ (Malus’s Law)

where

– I0 is the initial intensity of the light.

– θ is the angle between the light’s polarization direction and the axis of the polarizer.

11.6.2 Faraday’s Rotation

The Faraday effect, or Faraday rotation, is a magneto-optic phenomenon where the plane of polarization

of linearly polarized light is rotated when the light propagates through a material subjected to a strong,

static magnetic field aligned in the direction of propagation. This effect is one of the first historical pieces

of evidence linking light with electromagnetism.

When linearly polarized light passes through a transparent material of length L that is immersed in a

magnetic field B (parallel to the direction of propagation), the angle of rotation β of the polarization plane

is given by

β = V BL
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12 Quantum Mechanics

12.1 Atomic Structure

12.1.1 Historical Development

• Thomson’s Model (1897): ”Plum pudding” model with electrons embedded in positive charge

• Rutherford’s Model (1911): Nuclear model from alpha scattering experiments

• Bohr’s Model (1913): Quantized electron orbits

• Quantum Mechanical Model: Electron clouds/orbitals

12.1.2 Introduction

The atom consists of

• Nucleus: Protons (p+) and neutrons (n)

• Electrons: Negatively charged particles in orbitals

Particle Symbol Charge Mass (u)

Proton p or 1
1H +1 1.007276

Neutron n 0 1.008665

Electron e− -1 0.000549

Table 4: Basic atomic particles

For an element X,
A
ZX

where

• A is the mass number (protons + neutrons),

• Z is the atomic number (number of protons), and

• we can define N to be neutron number (N = A− Z)
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Example. 12
6 C6 has 6 protons and 6 neutrons.

The actual mass of a nucleus is less than the sum of its constituent particles:

∆m = (Zmp +Nmn)−mnucleus

where

• ∆m represents the mass defect,

• mp represents the mass of proton,

• mn represents the mass of neutron, and

• mnucleus represents the measured nuclear mass.

According to Einstein’s mass-energy equivalence

E = mc2

The binding energy is

BE = ∆m · c2

More conveniently, using atomic mass units (u) where 1 u = 931.5MeV/c2:

BE (MeV) = ∆m (u)× 931.5

12.1.3 Nuclear Decay

Type Emitted Particle Change in Nucleus Penetration

Alpha (α) 4
2He nucleus Z → Z − 2, A→ A− 4 Low

Beta (β−) Electron (e−) n→ p+ e− + ν̄ Medium

Beta (β+) Positron (e+) p→ n+ e+ + ν Medium

Gamma (γ) Photon (γ) No change in Z or A High

Table 5: Types of radioactive decay
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Radioactive decay follows first-order kinetics:

N(t) = N0e
−λt

where

• N(t) represents the number of nuclei at time t,

• N0 represents the initial number of nuclei, and

• λ =
ln 2
t1/2

represents the decay constant where t1/2 is half-life (time for half the nuclei to decay).

12.1.4 Neutrinos

Introductionn Neutrinos are elementary particles that are part of the lepton family. They are electri-

cally neutral and have an extremely small mass, making them very difficult to detect. Neutrinos interact

only through weak nuclear force and gravity, which is why they pass through matter almost unaffected.

The three types of neutrinos correspond to their associated charged leptons:

• Electron neutrino (νe)

• Muon neutrino (νµ)

• Tau neutrino (ντ )

These particles are produced in various high-energy processes, such as nuclear reactions in the Sun and

other stars, as well as in cosmic ray interactions and supernovae.

Solar Neutrinos The Sun is a primary source of neutrinos, particularly electron neutrinos (νe). These

solar neutrinos are produced during nuclear fusion processes that take place in the Sun’s core. The

dominant fusion reaction in the Sun is the proton-proton chain, which is responsible for the majority of

the energy production. In this process, four protons fuse to form a helium nucleus, releasing energy in the

form of gamma rays, neutrinos, and positrons.

The overall process can be written as

4 p −→ 4He+ 2 e+ + 2 νe + γ
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12.2 Wave-Particle Duality

Louis de Broglie proposed that all matter has wave-like properties. The de Broglie wavelength is given by

λ =
h

p

where

• λ is the de Broglie wavelength,

• h = 6.626× 10−34 J s is Planck’s constant, and

• p is the particle’s momentum.

12.3 Planck’s Equation

For electromagnetic waves of frequency ν, the energy of photon is given by

E = hν

12.4 Bohr Model of the Hydrogen Atom

12.4.1 Bohr Postulates

1. The electron moves in circular orbits around the proton due to Coulomb attraction.

2. Only certain discrete orbits are allowed.

3. The angular momentum of the electron is quantized.

4. Radiation is emitted or absorbed only during transitions between allowed orbits.

12.4.2 Formulas

The electrostatic force between the proton and electron is

F =
1

4πε0

e2

r2

For circular motion, the centripetal force is

F =
mv2

r
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Equating the two,
mv2

r
=

1

4πε0

e2

r2

Solving for velocity,

v2 =
1

4πε0

e2

mr

Bohr postulated

L = mvr = nh̄ n = 1, 2, 3, . . .

Solving for velocity,

v =
nh̄

mr

Substitute the expression for v: (
nh̄

mr

)2

=
1

4πε0

e2

mr

Solving for r,

rn =
4πε0h̄

2

me2
n2

Define the Bohr radius

a0 =
4πε0h̄

2

me2

Hence,

rn = a0n
2

The total energy is

E = K + U =
1

2
mv2 − 1

4πε0

e2

r

Note that

K =
1

2

1

4πε0

e2

r

Hence, the total energy becomes

E = −1

2

1

4πε0

e2

r

Substituting rn,

En = − me4

2(4πε0)2h̄
2

1

n2
=

−13.6 eV
n2
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12.4.3 Wavefunction

In quantum mechanics, the state of a particle is fully described by a complex-valued function called the

wavefunction, denoted by ψ(x, t). The wavefunction contains all the measurable information about the

system.

The physical interpretation of the wavefunction is given by the Born rule, which states that the probability

density of finding a particle at position x at time t is

P (x, t) = |ψ(x, t)|2

Since the particle must be found somewhere in space, the total probability of finding the particle over all

space must be equal to one. This requirement leads to the normalisation condition:

ˆ ∞

−∞
|ψ(x, t)|2 dx = 1

If a wavefunction does not initially satisfy this condition, it can be normalised by introducing a constant

A such that

Ψ(x, t) = Aψ(x, t)

where the constant A is chosen to ensure the normalisation condition is satisfied.

12.4.4 Time-Independent Schrödinger Equation

The Schrödinger equation is

− h̄2

2m
∇2ψ + V (r)ψ = Eψ

with the Coulomb potential

V (r) = − 1

4πε0

e2

r

Using separation of variables,

ψ(r, θ, ϕ) = R(r)Yℓm(θ, ϕ)

the radial equation becomes

d2R

dr2
+

2

r

dR

dr
+

[
2m

h̄2

(
E +

e2

4πε0r

)
− ℓ(ℓ+ 1)

r2

]
R = 0
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For large r, the Coulomb term becomes negligible, yielding

d2R

dr2
− κ2R = 0

where

κ =

√
−2mE

h̄2

The physically acceptable solution is

R(r) ∼ e−κr

For small r, the equation has solution

R(r) ∼ rℓ

Motivated by the asymptotic behavior, write

R(r) = rℓe−κrF (r)

Define a dimensionless variable

ρ = 2κr

and substitute into the radial equation to obtain

ρ
d2F

dρ2
+ (2ℓ+ 2− ρ)

dF

dρ
+

(
me2

2πε0h̄
2κ

− ℓ− 1

)
F = 0

Assume a power series

F (ρ) =
∞∑
k=0

akρ
k

Substitution yields the recursion relation

ak+1 =
k + ℓ+ 1− me2

2πε0h̄
2κ

(k + 1)(k + 2ℓ+ 2)
ak

For the wavefunction to remain normalizable, the series must terminate. Hence, there exists an integer nr

such that
me2

2πε0h̄
2κ

= nr + ℓ+ 1

Define the principal quantum number

n = nr + ℓ+ 1
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Solving for energy,

En = − me4

2(4πε0)2h̄
2

1

n2

12.5 Rydberg Formula

The wavelength λ of the emitted or absorbed light in a hydrogen atom is given by

1

λ
= R∞

(
1

n2
1

− 1

n2
2

)

where

• λ is the wavelength of the light,

• R∞ is the Rydberg constant for hydrogen, approximately R∞ = 1.097× 107 m−1, and

• n1 and n2 are positive integers, with n2 > n1.

Proof. According to the Bohr model, the energy levels of a hydrogen atom are quantized and given by

En = −13.6 eV
n2

When an electron transitions from a higher energy level n2 to a lower energy level n1, the energy difference

∆E is given by

∆E = En1 − En2 = −13.6 eV
n2
1

+
13.6 eV
n2
2

The energy of the emitted photon when the electron undergoes a transition is

Ephoton = ∆E = hν

The frequency ν of the emitted photon is related to the wavelength λ by

ν =
c

λ

By combining the expressions for Ephoton and ∆E, we obtain the Rydberg formula

1

λ
= R∞

(
1

n2
1

− 1

n2
2

)
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12.6 Uncertainty Principle

Werner Heisenberg showed that certain pairs of physical quantities cannot be simultaneously measured

with arbitrary precision. The most famous uncertainty relation is between position and momentum:

∆x∆p ≥ h̄

2

where

• ∆x is the uncertainty in position

• ∆p is the uncertainty in momentum

• h̄ =
h

2π
is the reduced Planck constant

Example. Consider a particle (e.g., an electron) passing through a narrow slit of width a along the

x-direction. Due to the confinement in position, the particle’s wavefunction is localized within the slit,

giving

∆x ∼ a

After passing through the slit, the particle undergoes diffraction, resulting in a spread in its momentum

in the x-direction. The diffraction pattern for a slit is given by the first minimum condition:

a sin θ ∼ λ

where θ is the diffraction angle and λ is the wavelength of the particle. For a particle with momentum p,

its wavelength is related to the momentum by de Broglie’s relation:

λ =
h

p

where h is Planck’s constant. The transverse momentum uncertainty is approximately

∆px ∼ p sin θ ∼ h

a

Multiplying the uncertainties in position and momentum:

∆x∆px ∼ a · h
a
∼ h ∼ h̄
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which reproduces the Heisenberg Uncertainty Principle approximately.

Another important uncertainty relation is between energy and time:

∆E∆t ≥ h̄

2

The uncertainty principle isn’t about measurement limitations, but about fundamental properties of quan-

tum systems. Particles don’t have precisely defined positions and momenta simultaneously.

Page 171 / 259



13 STELLAR ASTROPHYSICS By Pika and Owen

13 Stellar Astrophysics

13.1 Stellar Classifications

Stars can be classified by their internal structure:

• Main Sequence Stars: Hydrogen-burning core, radiative or convective energy transport. Governed

by mass-luminosity relation:

L

L⊙
≈



(
M

M⊙

)4.0

for M > 10M⊙(
M

M⊙

)3.5

for 0.5 < M < 10M⊙(
M

M⊙

)2.3

for M < 0.5M⊙

• Giant Stars: Expanded envelope, hydrogen shell burning around inert helium core.

• Supergiants: Massive stars with complex layered burning (H, He, C, O, Si shells).

• White Dwarfs: Electron-degenerate cores, supported by electron degeneracy pressure.

• Neutron Stars: Neutron-degenerate matter, extreme density (∼ 1017 kg/m3).

• Black Holes: Gravitational collapse beyond neutron degeneracy pressure support.

Stars can also be classified by their composition:

Population Metallicity [Fe/H] Characteristics

Population I ≥ −0.5 Metal-rich, disk stars, young

Population II −1.0 to −0.5 Metal-poor, halo stars, old

Population III � −1.0 Zero metals, first generation

Table 6: Stellar Populations

Metallicity affects stellar evolution:

• Opacity changes with metal content

• Lower metallicity stars are hotter and bluer at given mass
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• Metallicity influences mass loss rates

Stars can also be classified by their activity:

• Flare Stars (UV Ceti type): M-dwarfs with magnetic reconnection events: Magnetic reconnection

is a fundamental plasma physics process where the topology of magnetic field lines is rearranged,

converting magnetic energy into kinetic energy, thermal energy, and particle acceleration.

• Rotational Classes:

– Slow rotators: υeq < 10 km/s (Sun: 2 km/s)

– Fast rotators: υeq > 50 km/s (young stars)

• Magnetic Activity:

R′
HK =

LHK

Lbol

where LHK is the luminosity in the Calcium II H & K lines and Lbol is the bolometric luminosity:

Total power output across all wavelengths (from radio to X-rays). This ratio tells what fraction of

the star’s total energy output is being emitted specifically from its magnetically heated chromosphere

via these Calcium lines as Calcium II is singly-ionized calcium.

13.2 HR Diagram

13.2.1 Introduction

The Hertzsprung-Russell diagram (HR diagram) is one of the most important tools in astrophysics, inde-

pendently developed by Ejnar Hertzsprung (1905-1911) and Henry Norris Russell (1913). It revolutionized

our understanding of stellar evolution by revealing patterns in stellar properties.
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13.2.2 Spectral Types and Temperature

Each spectral type corresponds to a particular range of temperatures and characteristics. The order from

hottest to coolest stars is as follows:
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Spectral Type Temp (K) Color Mass (M⊙) Examples

O 30,000-50,000 Blue 15-90 ζ Puppis

B 10,000-30,000 Blue-white 2-15 Rigel, Spica

A 7,500-10,000 White 1.4-2 Sirius, Vega

F 6,000-7,500 Yellow-white 1.04-1.4 Procyon

G 5,200-6,000 Yellow 0.8-1.04 Sun, α Cen A

K 3,700-5,200 Orange 0.45-0.8 Arcturus, Aldebaran

M 2,400-3,700 Red 0.08-0.45 Betelgeuse, Proxima Cen

Table 7: MK Spectral Classification System

The sequence ”O, B, A, F, G, K, M” can be difficult to remember due to the variety of letters. To aid

in memorization, astronomers and students often use mnemonics. A common mnemonic for remembering

the spectral types in order is

“Oh Be A Fine Girl/Guy, Kiss Me!”

This mnemonic associates each letter with a word:

• O - Oh

• B - Be

• A - A

• F - Fine

• G - Girl/Guy

• K - Kiss

• M - Me

In addition to spectral types, stars are also classified based on their luminosity, which is related to their

size and brightness. This is done using Roman numerals from I to V:

• I: Supergiants (e.g., Betelgeuse)
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• II: Bright giants

• III: Giants (e.g., Alpha Centauri)

• IV: Subgiants

• V: Main sequence stars (e.g., the Sun)

The full classification of a star would be a combination of both spectral type and luminosity class. For

example, our Sun is classified as a G2V star, meaning it is a G-type main sequence star. 2 is a subclass

number that further refines the classification. The scale goes from 0 to 9, with 0 being the hottest and 9

being the coolest in each spectral type. The number 2 indicates that the star is towards the middle of the

G-type range. In this case, a G2 star has a temperature closer to 5, 800K.

13.2.3 Turn-Off Point

The turn-off point is an important feature in the HR diagram that helps astronomers determine the age

of a star cluster. It represents the point where stars, after exhausting the hydrogen in their cores, begin

to leave the main sequence and evolve into red giants. The position of the turn-off point on the diagram

depends on the mass of the stars in the cluster.

Note that

Age of Cluster = M

L
∝ M

M3.5
=

1

M2.5

where we use the mass of the star at the turn-off point M .

13.3 Stellar Evolution

13.3.1 Stellar Formation

Stars form from giant clouds of gas and dust called molecular clouds or nebulae. The process includes:

• Gravitational Collapse: Regions with higher density collapse under gravity.

• Protostar Formation: As the cloud collapses, a dense core forms and heats up due to gravitational

energy.

• Accretion: Surrounding material falls onto the protostar, increasing its mass and temperature.
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13.3.2 Pre-Main Sequence Stars

Before reaching the main sequence, stars go through the pre-main sequence (PMS) phase:

• The protostar contracts and heats up.

• Energy is produced mainly by gravitational contraction, not nuclear fusion.

• PMS stars follow Hayashi tracks (for lower-mass stars) or Henyey tracks (for higher-mass stars)

on the Hertzsprung-Russell diagram.

13.3.3 Main Sequence Stars

A star enters the main sequence when hydrogen fusion begins in its core.

• Core hydrogen fusion converts hydrogen into helium via the proton-proton chain (low-mass stars)

or CNO cycle (high-mass stars).

– Proton-Proton Chain:

4 1H −→ 4He+ 2e+ + 2νe + 26.7MeV

– CNO Cycle:
12C −→ 1H −→ 4He+ energy

• The star achieves hydrostatic equilibrium: gravity balanced by radiation pressure from fusion.

• The main sequence lifetime depends on stellar mass; higher-mass stars burn faster and live shorter

lives.

13.3.4 Post-Main Sequence Stars

After hydrogen in the core is exhausted, stars evolve differently depending on their mass.

Low to Intermediate-Mass Stars (< 8M⊙)

• Expand into Red Giants.

• Helium fusion begins in the core (triple-alpha process):

3 4He −→ 12C+ γ
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• May go through asymptotic giant branch (AGB) phase before shedding outer layers.

High-Mass Stars (> 8M⊙)

• Expand into supergiants.

• Fuse heavier elements in successive shells (C, O, Si, etc.).

• Form an iron core, which cannot undergo fusion to produce energy.

13.3.5 Supernovae

• Massive stars end their lives in a core-collapse supernova (Type II).

• The core collapses, and outer layers are expelled violently.

• Supernovae enrich the interstellar medium with heavy elements.

13.3.6 Planetary Nebulae

• Formed by low to intermediate-mass stars shedding their outer layers.

• The exposed core emits ultraviolet radiation, ionizing the ejected gas.

• Eventually fades to leave a white dwarf.

13.3.7 End States of Stars

• White Dwarfs: Remnants of low/intermediate-mass stars. Supported by electron degeneracy

pressure.

• Neutron Stars: Remnants of core-collapse supernovae of stars with 8 − 20M⊙. Supported by

neutron degeneracy pressure.

• Black Holes: Remnants of very massive stars (> 20M⊙). Gravity overwhelms all forms of degen-

eracy pressure.
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13.4 Magnitude System

Definition. 13.1: Luminosity

Luminosity is the total amount of energy emitted by a source per unit time.

Definition. 13.2: Luminance

Luminance is the amount of visible light emitted or reflected in a given direction per unit

area per unit solid angle. It describes how bright a surface appears to the human eye.

Property Luminosity Luminance

Physical meaning Total power emitted Brightness per area per direction

Depends on distance No No (but depends on direction)

Depends on area Indirectly Directly

SI unit Watt (W) cd/m2

Usually used in Astrophysics Optics

Definition. 13.3: Flux

The flux (F or Φ) is the total energy received from an astronomical object per unit time per unit

area. It represents the power (energy per unit time) crossing a unit area oriented perpendicular to

the direction of propagation.

For a source emitting total luminosity L isotropically, the flux measured at distance r is

F =
L

4πr2

Definition. 13.4: Solid Angle

The solid angle measures the three-dimensional angular size of an object as seen from a point. It

is defined as

dΩ =
dA

r2

where

• dA is an area element on a sphere of radius r,

• dΩ is the corresponding solid angle.

Page 179 / 259



13 STELLAR ASTROPHYSICS By Pika and Owen

Definition. 13.5: Intensity

The flux per unit solid angle is called intensity:

I =
dF

dΩ

Definition. 13.6: Spectral Flux Density

The spectral flux density (Fλ or Fν) is the flux per unit wavelength or frequency interval. It

describes how the flux is distributed across the electromagnetic spectrum.

The solar constant is the flux received from the Sun at Earth’s distance:

F⊙ = 1361 W m−2 = 1.361× 106 erg s−1cm−2

This represents the total solar power (all wavelengths) incident on 1 m2 at 1 AU.

Definition. 13.7: Apparent Magnitude

It refers to the brightness of an object as observed from Earth, given by

m = −2.5 log10
(
F

F0

)

where F0 is the reference flux for zero magnitude. The zero-point F0 is calibrated using standard

stars. Originally, Vega (α Lyrae) was defined to have magnitude 0.0 in all filters. Modern systems

use more precisely defined spectrophotometric standards.

Ancient astronomers (especially Hipparchus, 150 BCE) ranked stars by eye:

1. 1st magnitude means the brightest (e.g. Sirius and Vega)

2. 6th magnitude means faintest visible to the naked eye

Much later (1856), Norman Pogson put this on a mathematical footing. He defined the scale so that a

difference of 5 magnitudes corresponds to a brightness ratio of 100.

F1

F2

= 100 when m2 −m1 = 5
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Assume magnitude difference is proportional to the logarithm of the flux ratio:

m2 −m1 = k log10
(
F1

F2

)

By Pogson’s condition, 5 = 2k =⇒ k = 2.5. Take star 1 as the reference star: m1 = 0, F1 = F0

gives m = −2.5 log10
(
F

F0

)
. Later, the logarithmic scale was found to match the Weber-Fechner law in

psychophysics, which states that perceived sensation is proportional to the logarithm of stimulus intensity.

Definition. 13.8: Absolute Magnitude

The brightness an object would have if placed at a standard distance of 10 parsecs (32.6 light-years):

M = m− 5 log10
(

d

10 pc

)

where d is the distance to the object in parsecs.

Definition. 13.9: Distance Modulus

The difference between apparent and absolute magnitude relates directly to distance:

µ = m−M = 5 log10 d− 5

Definition. 13.10: Limiting Magnitude

The limiting magnitude is the faintest apparent magnitude of a celestial object that can be detected

with a given instrument under specific observing conditions. It represents the threshold between

what is observable and what is not. It is given by

mlim = meye + 5 log
(
D

deye

)
+ 2.5 log10

(
Transmission

0.95

)

where

1. meye is the naked-eye limiting magnitude (typically 6.0 under ideal conditions),

2. D is the telescope aperture,

3. deye is the dark-adapted pupil diameter (typically 7 mm), and

4. Transmission is the optical transmission coefficient.
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Definition. 13.11: Bolometric Magnitude

The bolometric magnitude (mbol or Mbol) is a measure of an astronomical object’s total electro-

magnetic luminosity across all wavelengths, from gamma rays to radio waves. Unlike filter-specific

magnitudes, it accounts for all emitted radiation.

The bolometric magnitude is defined through the bolometric flux Fbol, which is the integral of the

spectral flux density over all wavelengths:

Fbol =

ˆ ∞

0

Fλ dλ =

ˆ ∞

0

Fν dν

The apparent bolometric magnitude is then

mbol = −2.5 log10
(
Fbol

Fbol,0

)

where Fbol,0 is the reference bolometric flux for zero magnitude.

Definition. 13.12: Bolometric Correction

It refers to the difference between bolometric and visual magnitudes:

BC =Mbol −MV

or for apparent magnitudes:

BC = mbol −mV

The Sun’s magnitude is assumed to be bolometric by convention. Therefore, it is common to use

Mbol −M⊙ = −2.5 log10
(
L

L⊙

)
.

Example. (2013 IOAA) A star has visual apparent magnitude mV = 12.2 mag, parallax π = 0.001′′

and effective temperature Teff = 4000K. Its bolometric correction is B.C. = −0.6 mag.

(a) Find its luminosity as a function of the solar luminosity.

(b) What type of star is it?

(i) a red giant

(ii) a blue giant
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(iii) a red dwarf

Please write (i), (ii) or (iii) in your answer sheet.

(a) First, the absolute visual magnitude is obtained from

MV −mV = 5− 5 log r

or equivalently,

MV −mV = 5 + 5 log π

Thus,

MV = 12.2 + 5 + 5 log(0.001) = 12.2 + 5− 15 = 2.2 mag

The bolometric correction is defined as

B.C. =Mbol −MV

so

Mbol = B.C.+MV = −0.6 + 2.2 = 1.6 mag

The luminosity is calculated using

M⊙ −Mbol = 2.5 log
(
L

L⊙

)

where M⊙ = 4.72 mag. Hence,

4.72− 1.6 = 2.5 log
(
L

L⊙

)

log
(
L

L⊙

)
= 1.25

and therefore

L = 17.7L⊙

(b) A star with Mbol = 1.6 mag, luminosity L = 17.7L⊙, and effective temperature Teff = 4000K is

much brighter and cooler than the Sun. Therefore, it is (i) a red giant star.
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13.5 Albedo

Albedo is a dimensionless physical quantity that measures the reflectivity of a surface. It is defined as

the fraction of incident electromagnetic radiation (usually sunlight) that is reflected by a surface.

If a surface receives an incident radiant power Pin and reflects a power Pref, its albedo α is defined as

α =
Pref

Pin
, 0 ≤ α ≤ 1

Assuming the planet radiates as a black body and is in thermal equilibrium, the absorbed power equals

emitted power:

(1− α)πR2S = 4πR2σT 4

where σ is the Stefan–Boltzmann constant.

Solving for the equilibrium temperature T :

T =

(
(1− α)S

4σ

)1/4

13.6 Geometric Albedo

The geometric albedo is a dimensionless quantity that measures how bright an astronomical body

appears when observed at full phase (i.e. zero phase angle), compared to an idealized reference surface.

Let

• α be the phase angle, defined as the angle between the incident radiation from the source (e.g. the

Sun) and the direction to the observer, as seen from the object,

• α = 0 correspond to full illumination (observer directly behind the light source).

We introduce a reference surface:

A perfectly diffusing (Lambertian) flat disk with the same cross-sectional area as the object,

illuminated and observed at normal incidence.

A Lambertian surface reflects radiation isotropically, obeying Lambert’s cosine law:
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Theorem. 13.1: Lambert’s Cosine law

A surface obeys Lambert’s cosine law if its radiance is independent of direction:

I(θ, ϕ) = I0 = constant

For a Lambertian surface, the power emitted into solid angle dΩ is

dP = I0 cos θ dAdΩ

If the incident solar flux is Finc, a perfectly reflecting disk intercepts power P = FincA. Integrating the

Lambertian emission over a hemisphere:

Preflected =

ˆ 2π

0

ˆ π/2

0

Iref cos θ sin θA dθ dϕ = πAIref

Equating incident and reflected power (Preflected = FincA), we find:

Iref =
Finc

π

The geometric albedo p is defined as

p =
Iobject(α = 0)

Iref
=
πIobject(α = 0)

Finc

The total energy reflected in all directions is characterized by the Bond Albedo (AB), related to p by

the phase integral q:

AB = p · q, q = 2

ˆ π

0

Φ(α) sinα dα

where Φ(α) is the phase function, which is the relative brightness of the object as a function of the phase

angle, normalized such that Φ(0) = 1.

13.7 Color Indices

Color indices quantify the color of astronomical objects by measuring the difference in magnitude between

two different wavelength bands:

C = mλ1 −mλ2

where mλ1 and mλ2 are apparent magnitudes measured through different filters.
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Filter Center (λc, nm) FWHM (nm) Typical Use

U 365 66 Ultraviolet continuum

B 445 94 Blue light, Balmer break

V 551 88 Visual (photopic)

R 658 138 Red continuum

I 806 149 Near-infrared

Table 8: Johnson-Cousins photometric system filters

The followings are the common color indices to use:

U − B = mU −mB

B − V = mB −mV

V −R = mV −mR

V − I = mV −mI

The observed color index is affected by interstellar extinction:

(B − V )obs = (B − V )0 + E(B − V )

where E(B − V ) is the color excess:

E(B − V ) = AB − AV

where AB is the extinction in B-band in mag and AV is the extinction in V -band in mag.

13.8 Atmospheric Extinction

Atmospheric extinction reduces the observed flux:

mλ,obs = mλ,true + k′λ ·X

where

• k′λ is the extinction coefficient (mag/airmass) and
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• X is the airmass (dimensionless) which quantifies the atmosphere’s thickness along a light’s path.

For a plane-parallel atmosphere,

X = sec z

where z is the zenith distance (z = 90◦ − altitude).

13.9 Optical Depth

Optical depth τν describes attenuation by comparing the initial intensity Iν(0) and the transmitted inten-

sity Iν(s):

τν(s) ≡ − ln
(
Iν(s)

Iν(0)

)
Extinction in magnitudes Aλ is related to optical depth by

Aλ = 2.5 log10(eτλ) = 1.086 τλ

as
I

I0
= e−τλ = 10−0.4Aλ

13.10 Binary Star

Binary star systems consist of two stars orbiting around their common center of mass.

13.10.1 Different Types of Binary Stars

Visual Binaries They refer to the stars that can be resolved individually through telescopes. Their

orbits can be directly observed over time.

Spectroscopic Binaries They refer to the stars that can be detected through periodic Doppler shifts

in their spectral lines. They can be further identified as

• Single-lined spectroscopic binaries (SB1): Only one set of spectral lines is visible

• Double-lined spectroscopic binaries (SB2): Both sets of spectral lines are visible

Eclipsing Binaries They are the systems where the orbital plane is nearly edge-on to our line of sight,

causing periodic eclipses. These provide the most complete information about stellar parameters.
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Astrometric Binaries They can be detected through the wobble of one star’s proper motion due to an

unseen companion.

Interacting Binaries

• Mass transfer occurs when one star fills its Roche lobe.

• Examples: Cataclysmic variables, X-ray binaries.

Peculiar Binary Systems

• Systems with unusual properties such as extremely short orbital periods or highly eccentric orbits.

• Examples: Contact binaries, Algol-type binaries.

13.10.2 Modified Kepler’s Third Law

For a binary system, Kepler’s third law relates the orbital period P , semi-major axis a, and total mass M :

P 2 =
4π2a3

G(M1 +M2)
(28)

where

• P is the orbital period,

• a is the semi-major axis of the relative orbit, and

• M1,M2 are the masses of the two stars

13.10.3 Mass Function

For spectroscopic binaries, we measure the mass function. For single-lined spectroscopic binaries,

f(M) =
M3

2 sin3 i

(M1 +M2)2
=

P

2πG
v31,r

For double-lined spectroscopic binaries, we can determine the mass ratio:

M1

M2

=
v2,r
v1,r
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Proof. We begin with Kepler’s third law for two bodies orbiting their common center of mass:

P 2 =
4π2a3

G(M1 +M2)

where a = a1 + a2 is the total separation between the stars, and a1, a2 are their distances from the center

of mass.

The center of mass condition gives

a1M1 = a2M2

From this, we can write the mass ratio:
a1
a2

=
M2

M1

(29)

Also, the total separation can be expressed in terms of a1:

a = a1 + a2 (30)

= a1 + a1
M1

M2

(from Equation 29) (31)

= a1

(
M1 +M2

M2

)
(32)

For the visible star (star 1), we measure its radial velocity amplitude v1,r. The true orbital speed v1 is

related to the observed radial velocity by the inclination:

v1,r = v1 sin i (33)

For a circular orbit (e = 0), the orbital speed is constant and given by

v1 =
2πa1
P

(34)

Combining Equations 33 and 34:

v1,r =
2πa1 sin i

P
(35)

From Equation 35, we can solve for a1:

a1 =
Pv1,r
2π sin i
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Now substitute Equation 32 into Kepler’s law (Equation 13.10.3):

P 2 =
4π2

G(M1 +M2)

[
a1

(
M1 +M2

M2

)]3
(36)

=
4π2a31

G(M1 +M2)
· (M1 +M2)

3

M3
2

(37)

=
4π2a31
G

· (M1 +M2)
2

M3
2

(38)

Now substitute a1 from Equation 13.10.3 into Equation 38:

P 2 =
4π2

G
· (M1 +M2)

2

M3
2

·
(
Pv1,r
2π sin i

)3

=
4π2

G
· (M1 +M2)

2

M3
2

·
P 3v31,r

8π3 sin3 i

=
P 3v31,r

2πG sin3 i
· (M1 +M2)

2

M3
2

Cancel P 2 from both sides (multiply both sides by 1/P 2):

1 =
Pv31,r

2πG sin3 i
· (M1 +M2)

2

M3
2

Now rearrange to isolate the mass terms on the left:

M3
2 sin3 i

(M1 +M2)2
=

P

2πG
v31,r

13.10.4 Light Curves

Eclipsing binaries exhibit characteristic light curves with periodic dips in brightness:
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1. Let F1 and F2 be the flux of the two stars. The total observed flux when both stars are visible is

Ftotal = F1 + F2

2. The primary eclipse occurs when the brighter star is partially or fully blocked by the dimmer star,

causing a significant dip. Let the obscured fraction of the primary star be f1(t), then the observed

flux is

Fprimary(t) = F1 [1− f1(t)] + F2

3. The secondary eclipse occurs when the dimmer star is blocked, causing a smaller dip. The fainter

star is obscured by the brighter star. Let f2(t) be the obscured fraction of the secondary star, then:

Fsecondary(t) = F1 + F2 [1− f2(t)]

4. If the eclipse is total, the flux reduces exactly by the luminosity of the obscured star.

In this plot,

• The first deep dip at t = 1 day corresponds to the primary eclipse.

• The smaller dip at t = 3 days corresponds to the secondary eclipse.

13.10.5 Radial Velocity Curves

A binary star system consists of two stars orbiting their common center of mass. If the orbital plane is

inclined relative to the line of sight, the stars will alternately move toward and away from the observer.

This motion causes a periodic Doppler shift in the spectral lines:

• Motion toward the observer will result in blueshift

• Motion away from the observer will result in redshift

The line-of-sight component of the orbital velocity is called the radial velocity. A radial velocity curve

is a plot of radial velocity vr versus time t (or orbital phase). It provides direct information about the

orbital properties of the binary system.

For a binary star in a circular orbit, the radial velocity varies sinusoidally:

vr(t) = K sin
(
2πt

P
+ ϕ

)
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where

• K is the radial velocity amplitude

• P is the orbital period

• ϕ is the phase constant

Time / Orbital Phase

vr

Star 1

Star 2

+K1

−K1

• The curves are sinusoidal for circular orbits.

• The two stars have opposite phases due to conservation of momentum.

• The more massive star has a smaller velocity amplitude.

• The period of the curve equals the orbital period.

For a binary star in an elliptical orbit, the radial velocity of one component is given by:

vr(t) = γ +K [cos(θ(t) + ω) + e cosω]

where

• γ is the systemic (center-of-mass) velocity

• K is the radial velocity semi-amplitude

• e is the orbital eccentricity

• ω is the argument of periastron

• θ(t) is the true anomaly
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The semi-amplitude K is

K =
2πa sin i
P
√
1− e2

where

• a is the semi-major axis of the star’s orbit about the barycenter

• i is the inclination angle

• P is the orbital period

The following shows an example of the radial velocity curve:

Orbital Phase

vr (arb. units)

e = 0.75, ω = 90◦

ϕ = 1

Periastron Apastron

vmax

vmin

13.10.6 Roche Lobe

In a close binary star system, the gravitational field experienced by a test particle is determined by the

combined gravity of both stars and the centrifugal effect in the rotating frame. The Roche lobe of a star

is defined as the region around that star within which material is gravitationally bound to it. If a star

fills or overflows its Roche lobe, mass transfer to its companion can occur, a key mechanism in interacting

binaries such as X-ray binaries, cataclysmic variables, and some exoplanetary systems.
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Figure 9: Source: https://root-nation.com/ua/news-ua/it-news-ua/ua-blackhole-warped-accretion-disc/

13.11 Exoplanet

13.11.1 Introduction

An exoplanet (or extrasolar planet) is a planet that orbits a star outside our Solar System. The term

comes from the Greek ”exo” (outside) and ”planētēs” (wanderer).

13.11.2 Classes of Exoplanets

• Hot Jupiters: Gas giants very close to their stars.

• Super-Earths: Planets with masses larger than Earth but smaller than Neptune.

• Terrestrial planets: Rocky planets similar to Earth or Mars.

• Ice giants: Analogous to Uranus and Neptune.

13.11.3 Spectral Signatures of Possible Life

• Detection of biosignature gases like O2, O3, CH4, and water vapor in exoplanet atmospheres.

• Observed via transmission spectroscopy during planetary transits.
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13.11.4 Radial Velocity Method

It is also known as the Doppler method. This technique measures the star’s wobble caused by an orbiting

planet’s gravitational pull.

∆v = K

[
P

2πG

]1/3
mp sin i
m

2/3
s

1√
1− e2

where

• ∆v represents the velocity semi-amplitude,

• K is a constant,

• P represents the orbital period,

• mp represents the planet mass,

• ms represents the star mass,

• i represents the orbital inclination, and

• e represents the orbital eccentricity.

13.11.5 Transit Method

It measures the periodic dimming of a star as a planet passes in front of it.

∆F =

(
Rp

Rs

)2

where ∆F is the fractional flux decrease, Rp is planet radius, and Rs is star radius.

13.11.6 Habitable Zone

A habitable zone refers to the region around a star where liquid water could exist on a planet’s surface.
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14 Cosmology

14.1 Structure of the Universe

14.1.1 Star Clusters

Introduction Star clusters are groups of stars that are gravitationally bound and formed from the

same molecular cloud. They provide important insights into stellar evolution and galactic structure. Star

clusters are broadly classified into two types:

• Open Clusters (Galactic Clusters): These contain a few tens to a few thousand stars. They are

loosely bound and typically found in the Galactic disk. Open clusters are relatively young (a few

million to a few hundred million years) and often contain hot, massive stars.

• Globular Clusters: These are densely packed spherical collections of tens of thousands to millions

of stars. They orbit the Galactic halo and are typically very old (10–13 billion years). Globular

clusters are rich in low-mass stars and show little gas or dust.

Structurally, a star cluster has a core (densest region), a halo (more diffuse stars), and in some cases a

tidal radius where stars may escape due to Galactic gravitational forces.

Luminosity The luminosity L of a star cluster can be calculated by summing the luminosities of all the

stars in the cluster:

Lcluster =
∑

Lstars

Where Lstars is the luminosity of each star in the cluster.

14.1.2 Galaxies

Introduction Galaxies are vast systems of stars, gas, dust, and dark matter, bound together by gravity.

They are the fundamental building blocks of the Universe. Galaxies can be classified based on their

structure, composition, and activity:

• Elliptical galaxies: Smooth, featureless light distribution, dominated by older stars, little gas or

dust.

• Spiral galaxies: Flat, rotating disks with spiral arms, containing gas, dust, and young stars.
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• Barred spiral galaxies: Spiral galaxies with a central bar-shaped structure of stars.

• Irregular galaxies: No definite shape, often rich in gas and dust.

• Active galaxies: Galaxies with energetic cores (AGN), often emitting strong radiation due to

accretion onto supermassive black holes.

Our galaxy is a barred spiral galaxy with several distinct components:

• Bulge: Central region, high star density, mostly old stars.

• Disk: Contains spiral arms, gas, dust, and young stars.

• Halo: Spherical region with globular clusters and dark matter.

Figure 10: From https://sci.esa.int/web/gaia/-/58206-anatomy-of-the-milky-way

Milky Way The Milky Way is a barred spiral galaxy containing several hundred billion stars, along with

interstellar gas, dust, and a dominant dark matter halo. Its stellar disk has a diameter of approximately

30 kpc, while the dark matter halo is believed to extend to radii of order 200 kpc or more. The Milky Way

is structured into several main components:

• a thin and thick stellar disk,

• a central bulge and bar,

• a stellar halo,

• an extended dark matter halo.
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The Galaxy is not an isolated system. It is surrounded by a population of smaller galaxies gravitationally

bound to it, known as satellite galaxies, like the Large and Small Magellanic Clouds, and several ultra-

faint dwarf galaxies.

Satellite galaxies are typically low-mass systems orbiting the Milky Way within its dark matter halo. They

are remnants of the hierarchical assembly process predicted by the ΛCDM cosmological model, in which

large galaxies grow through the accretion and merger of smaller ones. Dozens of Milky Way satellites are

currently known, and ongoing deep surveys continue to discover new, extremely faint systems.

Galactic Geometry and Coordinates We model the Milky Way as a rotating disk with the Galactic

Center (GC) at the origin. Let R be the Galactocentric distance of an object, R0 be the Galactocentric

distance of the Sun, Θ(R) be the circular rotation speed at radius R, Θ0 = Θ(R0) be the circular speed of

the Sun, l be the Galactic longitude of the object, and b be the Galactic latitude.

Throughout this section we assume b = 0 (objects in the Galactic plane), so cos b = 1. The extension to

nonzero b is obtained by multiplying the final radial velocity by cos b.

Assume both the Sun and the object move on circular orbits around the Galactic Center. From Galactic

geometry, the radial velocity of an object at longitude l is

vr =

[
Θ(R)

R0

R
−Θ0

]
sin l

For an object at heliocentric distance d, the Galactocentric radius R is

R2 = R2
0 + d2 − 2R0d cos l

For longitudes 0◦ < l < 90◦ or 270◦ < l < 360◦, the line of sight intersects regions with R < R0. In this

case:

• The radial velocity varies monotonically along the line of sight.

• A maximum (or minimum) radial velocity occurs at the tangent point.

At the tangent point,

R = R0 sin l

and the radial velocity becomes

vr,max = [Θ(R0 sin l)−Θ0 sin l]

For longitudes 90◦ < l < 270◦, all points along the line of sight satisfy R > R0. In this region,
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• There is no tangent point.

• Radial velocity depends on both distance d and the rotation curve.

The general formula

vr =

[
Θ(R)

R0

R
−Θ0

]
sin l

still applies, but vr alone is insufficient to uniquely determine R.

14.2 Large-scale Structure

The large-scale structure (LSS) of the Universe refers to the distribution of matter on scales larger than

individual galaxies (typically ≳ 1 Mpc). On these scales, matter is not distributed uniformly, but forms a

complex network known as the cosmic web:

• Galaxy clusters: Dense, gravitationally bound systems of hundreds to thousands of galaxies.

• Galaxy groups: Smaller associations of galaxies, often containing a few to tens of members.

• Filaments: Elongated structures connecting clusters and groups, containing galaxies and dark

matter.

• Voids: Large, underdense regions with very few galaxies.

• Walls / Sheets: Flattened structures of galaxies separating voids.

Large-scale structure formed from tiny density fluctuations in the early Universe:

• Quantum fluctuations were stretched during cosmic inflation.

• Overdensities grew via gravitational instability.

• Dark matter collapsed first, forming gravitational potential wells.

• Baryonic matter later fell into these wells, forming galaxies.

On sufficiently large scales (≳ 100 Mpc), the Universe is approximately homogeneous and isotropic, con-

sistent with the cosmological principle.
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14.3 Cosmological Principle

The cosmological principle states that on sufficiently large scales (≳ 100 Mpc), the universe is

• Homogeneous: Matter and energy are uniformly distributed

• Isotropic: No preferred direction in space

14.4 Rotational Curve

In a galaxy, the stars or gas clouds orbit the galactic center due to the gravitational pull of the mass

contained within the galaxy. According to Newtonian mechanics, the orbital velocity of an object at a

given distance r from the center of a galaxy should behave as

v(r) =

√
GMenc(r)

r

where

• v(r) is the orbital velocity at a distance r from the center and

• Menc(r) is the enclosed mass within radius r.

The mass enclosed Menc(r) depends on the distribution of both visible matter (such as stars and gas) and

dark matter within the galaxy.

For a galaxy dominated by visible matter (stars, gas, etc.), the enclosed mass increases with radius, but

at larger distances from the center, the mass distribution becomes less dense. Then

v(r) ∝ 1√
r

This is called the Keplerian decline and is observed in the motion of planets in our solar system.

However, observations of galaxies reveal that the rotation curves do not behave this way.

In the 1970s, astronomers like Vera Rubin and Kent Ford observed that the rotation curves of spiral

galaxies remain nearly flat at large distances from the center, far beyond the region where visible matter

is present. This observation was unexpected, as the rotation velocity should have decreased if the mass

distribution followed the visible matter alone. The flatness of the rotation curve suggests that there is

additional mass present that is not visible. This mass is what we refer to as dark matter.
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The flat rotation curves observed at large radii imply that the mass within the galaxy continues to increase

even in the outer regions. The orbital velocity v(r) remains constant:

v(r) = vflat for large r

This indicates that the gravitational influence of dark matter is significant at large distances from the

galactic center, where visible matter is sparse.

14.5 Hubble’s Law

v = H0 d

where v is the recession velocity, d is the proper distance to the galaxy, and H0 is the present-day Hubble

constant. One can notice that tH =
1

H0

is the age of the universe.

Cosmic expansion is described by the scale factor a(t), which measures how distances in the Universe

change over time. The Hubble parameter is defined using the scale factor:

H(t) =
ȧ(t)

a(t)

Light traveling through an expanding Universe also stretches with the expansion. If a photon is emitted at

time tem with wavelength λem and observed today at t0 with wavelength λobs, the cosmological redshift

is defined as

1 + z =
λobs

λem

The redshift is directly related to the scale factor:

1 + z =
a(t0)

a(tem)

14.6 Cosmological Distance Measures

14.6.1 Proper Distance

The proper distance is related to the scale factor a(t) of the universe, which describes how distances

between objects in the universe change with time due to the expansion. For an object at redshift z, the
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proper distance Dp at a given time is related to the comoving distance Dc by

Dp(t) = a(t)Dc

where

• Dp is the proper distance,

• Dc is the comoving distance,

• a(t) is the scale factor at the time of observation.

14.6.2 Comoving Distance

The comoving distance is the distance between two objects as measured in a coordinate system that

accounts for the expansion of the universe. Unlike the proper distance, the comoving distance remains

constant over time for two objects that are at rest relative to each other in the expanding universe.

The comoving distance Dc at redshift z is related to the scale factor a(t) by

Dc =

ˆ z

0

c dz′

H(z′)

where

• c is the speed of light,

• H(z′) is the Hubble parameter as a function of redshift z′, and

• z is the redshift at which the object is located.

14.6.3 Luminosity Distance

The luminosity distance is the distance to an object based on its observed brightness and its intrinsic

luminosity. It is often used for objects like supernovae, which have a known intrinsic luminosity.

The luminosity distance DL is related to the observed flux fobs and the intrinsic luminosity L of an object

by the inverse square law:

fobs =
L

4πD2
L
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From this relation, we can solve for the luminosity distance:

DL =

√
L

4πfobs

In a flat universe, the luminosity distance is related to the comoving distance by

DL(z) = (1 + z)Dc(z)

14.6.4 Angular Diameter Distance

The angular diameter distance is related to the physical size r of an object and its angular size θ (in

radians) by the relation

θ =
r

DA

14.7 Friedmann Equation

Theorem. 14.1: First Friedmann Equation(
ȧ(t)

a(t)

)2

=
8πG

3
ρ− kc2

a(t)2
+

Λc2

3

where

• cosmological constant Λ represents homogeneous energy density inherent to empty space (dark

energy): Λ = 0 for flat and static universe (Minkowski universe), Λ > 0 for expanding universe

and Λ < 0 for contracting universe and

• curvature parameter k = +1 for positive curvature, k = −1 for negative curvature, k = 0 for

zero curvature.

Theorem. 14.2: Second Friedmann Equation

ä(t)

a(t)
= −4πG

3

(
ρ− 3p

c2

)
+

Λc2

3

• When Λ = 0 and k = 0, ρ = 3H2

8πG
which is called the important density. We may denote ρc.

• Density parameter Ωi :=
ρi
ρc
. Note that Ωm + Ωr + ΩΛ + Ωk = 1. Also, by second Friedmann’s
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equation and definition,

Ωm =
8πGρm
3H2

, Ωk = − kc2

a2H2
, ΩΛ =

Λc2

8πG

• From first and second Friedmann equation,

ρ̇+ 3H
(
ρ+

p

c2

)
= 0 (Fluid Equation)

• The ΛCDM model, also known as the Lambda Cold Dark Matter model, is the current standard

model of cosmology. It describes the evolution of the Universe from the early hot and dense state to

its current large-scale structure. The model is based on the following components:

– Cosmological Constant (Λ): It is responsible for the accelerated expansion of the Universe.

Dark energy has an opposing effect to gravity: instead of attracting matter (like gravity does),

dark energy exerts a repulsive force. This repulsive force is responsible for causing the acceler-

ated expansion of the Universe, pushing galaxies apart at an ever-increasing rate.

– Cold Dark Matter (CDM): It is also referred to as ”cold” because it moves slowly compared

to the speed of light. This is in contrast to ”hot” dark matter, which would consist of fast-

moving particles.

Cold dark matter is preferred in cosmological models because it allows for the formation of

small structures (such as galaxies) early in the Universe’s history, which is consistent with

observational data.

Definition. 14.1: Hubble parameter

The Hubble parameter H(t) is defined as the rate of change of the scale factor a(t) and is given by

H(t) =
ȧ(t)

a(t)
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14.8 Equation of State

For different cosmic components,

Non-relativistic matter (dust): p = 0 =⇒ ρm ∝ a−3

Radiation: p = ρc2/3 =⇒ ρr ∝ a−4

Cosmological constant: p = −ρc2 =⇒ ρΛ = constant

Proof. Rewriting the fluid equation,

dρ

dt
+ 3

ȧ

a

(
ρ+

p

c2

)
= 0

By chain rule ρ̇ = dρ

da
ȧ,

ȧ
dρ

da
+ 3

ȧ

a

(
ρ+

p

c2

)
= 0

Assuming ȧ 6= 0:
dρ

da
+

3

a

(
ρ+

p

c2

)
= 0

By equation of states,

p = wρc2

where w is a constant for each cosmological component.

dρ

da
+

3

a
(1 + w)ρ = 0

dρ

ρ
= −3(1 + w)

da

a
ˆ ρ

ρi

dρ′

ρ′
= −3(1 + w)

ˆ a

ai

da′

a′

ln
(
ρ

ρi

)
= −3(1 + w) ln

(
a

ai

)
ρ

ρi
=

(
a

ai

)−3(1+w)

Choosing ai = 1 for present epoch (ρi = ρ0):

ρ(a) = ρ0a
−3(1+w)
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14.9 Big Bang

14.9.1 Singularity

At the very beginning of the universe, all matter and energy were concentrated in a singularity, a point

of infinite density and temperature. This singularity is thought to have contained all the space, time, and

energy that would later expand to form the universe as we know it.

14.9.2 Cosmic Inflation

Cosmic inflation is a theory that explains the rapid expansion of the universe during the first fractions of

a second after the Big Bang. During inflation, the universe expanded exponentially, increasing in size by

a factor of at least 1026 in a fraction of a second. This theory helps explain several observed features of

the universe, such as its large-scale homogeneity and isotropy, and the distribution of galaxies.

14.9.3 Expansion of Space

The Big Bang theory proposes that space itself is expanding. This expansion is not into pre-existing

space; rather, it is the stretching of space itself. As space expands, the distances between distant galaxies

increase, leading to the observed redshift of light from those galaxies. This expansion of the universe is

described mathematically by the Friedmann equations.

14.9.4 Phases of the Big Bang

Planck Era (0 to 10−43 seconds) The Planck era represents the earliest period of the universe, from

time t = 0 up to approximately 10−43 seconds after the Big Bang. During this time, the universe was

incredibly hot and dense, and the fundamental forces (gravity, electromagnetism, the weak nuclear force,

and the strong nuclear force) were likely unified in a single force. The exact nature of the physics during

this period is unknown, as quantum gravity has yet to be fully understood.

Grand Unification Era (from 10−43 to 10−36 seconds) During the Grand Unification era, the fun-

damental forces separated. At the highest energies, the strong, weak, and electromagnetic forces were

unified into a single force. As the universe cooled, these forces separated and the strong force, responsible

for holding atomic nuclei together, emerged.
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Inflationary Era (from 10−36 to 10−32 seconds) The universe underwent a brief period of exponential

expansion during the inflationary era. During this time, the universe expanded by a factor of at least 1026

in a fraction of a second. This rapid inflation smoothed out the universe and led to the large-scale

homogeneity and isotropy observed today. It also helped set the initial conditions for the formation of the

first particles.

Quark Era (from 10−12 to 10−6 seconds) As the universe continued to cool, quarks, electrons, and

other fundamental particles began to form. During the quark era, quarks combined to form protons and

neutrons. The temperature and energy were still high enough for these particles to interact and decay

frequently.

Hadron Era (from 10−6 seconds to 1 second) At around 10−6 seconds after the Big Bang, the

temperature dropped enough for quarks to combine into hadrons, such as protons and neutrons. This era

marked the formation of the first stable atomic nuclei.

Lepton Era (from 1 second to 10 seconds) During the lepton era, the universe was dominated by

leptons (such as electrons and neutrinos). These particles were created and annihilated in large quantities.

Neutrinos, which were created in abundance, decoupled from the rest of matter at around 10 seconds.

Photon Era (from 10 seconds to 380,000 years) As the universe continued to cool, photons dom-

inated the universe. At this time, matter and radiation were tightly coupled. The universe was opaque

because free electrons scattered photons, preventing light from traveling freely. However, the universe con-

tinued to expand and cool, and at about 380,000 years after the Big Bang, the universe had cooled enough

for atoms to form and photons to travel freely, leading to the decoupling of matter and radiation. This

event is known as the recombination epoch and is associated with the cosmic microwave background

(CMB) radiation, which we observe today.

Recombination and the Formation of Atoms (380,000 years) During recombination, the universe

cooled enough for protons and electrons to combine and form neutral hydrogen atoms. This allowed

photons to travel freely through space, marking the beginning of the era of decoupling. The release of

these photons is known as the CMB radiation.

Dark Ages (380,000 years to 1 billion years) After the formation of atoms, the universe entered the

”dark ages,” a period in which there were no stars or galaxies. During this time, the universe continued
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to cool and matter began to clump together due to gravitational attraction. However, it was not until the

formation of the first stars and galaxies that the universe became more active.

Reionization (1 billion years to 2 billion years) Reionization occurred when the first stars and

galaxies formed and emitted ultraviolet light that reionized the hydrogen gas. This process ended the dark

ages and allowed the universe to become transparent to ultraviolet light.

The Modern Universe (Present Day) Since the era of reionization, the universe has continued to

expand and evolve. Galaxies, clusters of galaxies, and large-scale structures have formed over billions of

years. The observable universe is currently about 93 billion light-years in diameter.

14.10 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the oldest light in the universe, originating approximately

380,000 years after the Big Bang. It provides a snapshot of the infant universe when it transitioned from

an opaque plasma to a transparent gas.

The CMB originates from the recombination epoch when the universe cooled sufficiently for electrons and

protons to combine into neutral hydrogen atoms:

p+ + e− −→ H+ γ

The cosmic microwave background is a faint radiation that fills the universe and is a remnant of the

early hot, dense phase of the universe. It was first detected by Penzias and Wilson in 1965 and is often

considered the strongest evidence for the Big Bang.

14.11 Gravitational Lensing

14.11.1 Introduction

Gravitational lensing is the bending of light by mass according to general relativity. A mass distribution

between a distant source and an observer deflects light rays, producing phenomena such as multiple images,

magnification, and distortion of the source.

For a point massM (in Schwarzschild metric), a light ray with impact parameter b is deflected by an angle
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in weak-field. Then, the deflection angle is

α̂(b) =
4GM

bc2

where G is the gravitational constant and c the speed of light.

We use the thin-lens approximation: the deflection happens effectively at a single lens plane located at

angular diameter distance DL from the observer. Similarly, the source is at distance DS and the distance

between lens and source is DLS. Let β be the true angular position of the source on the sky (unlensed),

and θ the observed angular position of the image. Then

β = θ −α(θ)

where the scaled deflection angle is

α(θ) =
DLS

DS
α̂(DLθ)

For a point mass M located on the optical axis, the scalar form of the lens equation (assuming alignment

along a single axis) becomes

β = θ − DLS

DS

4GM

c2DLθ

When the source, lens and observer are perfectly aligned (β = 0) the image forms a ring (Einstein ring)

with angular radius θE solving:

θE =

√
4GM

c2
DLS

DLDS

14.11.2 Derivation using Newtonian Mechanics

In Newtonian gravity, the force on a particle of mass m at distance r from M is

F =
GMm

r2

Only the component perpendicular to the initial direction of motion contributes to the deflection. If the

photon moves along the x-axis and passes the mass at distance b, then

r =
√
x2 + b2, sin θ = b

r
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The transverse force is therefore

F⊥ = F sin θ = GMm

r2
b

r
=

GMmb

(x2 + b2)3/2

The transverse acceleration is

a⊥ =
F⊥

m
=

GMb

(x2 + b2)3/2

The photon moves approximately at constant speed c, so

x = ct, dt =
dx

c

The total change in transverse velocity is

∆v⊥ =

ˆ ∞

−∞
a⊥ dt =

1

c

ˆ ∞

−∞

GMb

(x2 + b2)3/2
dx

Using the standard integral ˆ ∞

−∞

b dx

(x2 + b2)3/2
=

2

b

we obtain

∆v⊥ =
2GM

bc

For small deflections, the bending angle α is approximately the ratio of the transverse velocity change to

the speed of light:

α ≈ ∆v⊥
c

Hence,

αNewton =
2GM

bc2

General Relativity predicts a deflection angle

αGR =
4GM

bc2

which is exactly twice the Newtonian result. The additional factor arises from the curvature of space,

which is absent in Newtonian gravity.
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14.11.3 Derivation using General Relativity

Definition. 14.2: Lagrangian

The Lagrangian L is defined as

L(q, q̇, t) = T (q̇)− V (q)

where T is the kinetic energy and V is the potential energy.

Theorem. 14.3: Euler-Lagrange Equation

d

dt

(
∂L
∂q̇

)
=
∂L
∂q

Theorem. 14.4: Fermat’s Principle

For light propagating in a medium with refractive index n(r), the time taken to travel along a path

C from point A to point B is

T =

ˆ B

A

dt =

ˆ B

A

ds

v
=

1

c

ˆ B

A

n(r) ds

where

• v = c/n is the speed of light in the medium

• ds =
√
dx2 + dy2 + dz2 is the infinitesimal path length

• c is the speed of light in vacuum

Fermat’s principle states that the actual path C minimizes (or more generally, makes stationary) the

optical path length:

S =

ˆ B

A

n(r) ds
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Figure 11: Source: https://esahubble.org/images/heic1106c/

In weak-field approximation of the spacetime metric (which is a situation in which the gravitational

field is relatively weak and the spacetime curvature is small),

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 +

(
1− 2Φ

c2

)
δijdx

idxj +O
(
Φ2

c4

)

where Φ = −GM/r and |Φ| � c2. Set c = 1.

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) = 0 =⇒ v ≈ 1 + 2Φ

Consider a nearly straight path in the x-y plane with small deflection. Let y = y(x), z = 0, with |y′| � 1.

Then

dl =
√

1 + (y′)2dx ≈
[
1 +

1

2
(y′)2

]
dx

The optical path length is

S =

ˆ
n dl ≈

ˆ
[1− 2Φ(x, y)]

[
1 +

1

2
(y′)2

]
dx

≈
ˆ [

1− 2Φ +
1

2
(y′)2

]
dx
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Consider

L =
1

2
(y′)2 − 2Φ(x, y)

d

dx

(
∂L

∂y′

)
=
∂L

∂y
=⇒ d

dx
(y′) = −2

∂Φ

∂y
=⇒ d2y

dx2
= −2

∂Φ

∂y

Let y(x) = b+ ε(x) with ε small:

ε′′(x) = −2
∂Φ

∂y
(x, b)

The total deflection angle is:

α = ∆y′ = ε′(+∞)− ε′(−∞) =

ˆ ∞

−∞
ε′′(x)dx

For a point mass Φ = −GM/r with r =
√
x2 + y2:

∂Φ

∂y
= GM

y

(x2 + y2)3/2

At y = b:

α = −2GMb

ˆ ∞

−∞

dx

(x2 + b2)3/2

Note that ˆ ∞

−∞

dx

(x2 + b2)3/2
=

2

b2

Therefore,

α = −2GMb · 2

b2
= −4GM

b

The magnitude of the deflection (toward the mass) is

|α| = 4GM

b

In the metric, Φ → Φ/c2. Then

α =
4GM

bc2
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14.12 Gravitational Wave

14.12.1 Introduction

Gravitational waves are disturbances in the curvature of spacetime caused by accelerated masses. They

were first predicted by Albert Einstein in 1916 as a consequence of his General Relativity theory. Unlike

electromagnetic waves, gravitational waves interact weakly with matter, making them challenging to detect

but allowing them to carry information about cataclysmic cosmic events.

14.12.2 Chirp Mass

For a binary system with component masses m1 and m2, the chirp mass is

M =
(m1m2)

3/5

(m1 +m2)1/5
=
c3

G

(
5

96
π−8/3f−11/3ḟ

)3/5

where f is the orbital frequency.

14.12.3 Binary System

For a binary system with masses m1 and m2, and orbital frequency forb, the gravitational wave luminosity

is

LGW =
32

5Gc5
(2πGMforb)

10/3

where r is the orbital separation.

14.13 Accretion Processes

14.13.1 Introduction

Accretion is the process by which matter falls onto a central object, such as a star, black hole, or neutron

star, under the influence of gravity.

• Spherical accretion occurs when matter falls radially inward toward a central object in a spherically

symmetric manner.

• Disc accretion occurs when matter, due to its angular momentum, forms a rotating disc as it falls

toward a central object.
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Figure 12: Source: https://www.skyatnightmagazine.com/space-science/accretion-disk

14.13.2 Eddington Luminosity

Consider a spherical surface with radius r centered around a light source, where the total luminosity of

the source is L. The energy flux (the energy per unit time passing through a unit area) at a distance r

from the source is given by the total luminosity divided by the surface area of a sphere with radius r. The

surface area of a sphere is

A = 4πr2

Hence, the energy flux at distance r is:

F =
L

4πr2

Now, consider the nature of radiation pressure. Photons carry momentum, and when they strike a surface,

they transfer momentum to it. The radiation pressure is related to the energy flux by the relationship:

E = pc =⇒ Prad =
1

A

dp

dt
=
F

c

where c is the speed of light, and this formula assumes that the radiation is isotropic and that the photon

momentum transfer is fully efficient in transferring momentum to the surface. Then

Prad =
1

c
· L

4πr2
=

L

4πr2c

The Eddington luminosity, LEdd, is the maximum luminosity an astronomical object can have when

there is a balance between the radiation pressure outward and the gravitational force inward.

Page 215 / 259



14 COSMOLOGY By Pika and Owen

The radiation pressure on an object is given by

Prad =
L

4πr2c

where L is the luminosity, r is the radius of the object, and c is the speed of light. The gravitational force

is given by

Fgrav =
GMm

r2

whereM is the mass of the central object,m is the mass of the accreting material, andG is the gravitational

constant. When balanced,
L

4πr2c
=
GMm

r2

Simplifying this equation:

L =
4πGMmc

r2

For the Eddington luminosity, we consider the maximum luminosity for the material to remain bound

to the central object without being blown away by radiation pressure. Using the fact that the material

consists of hydrogen, for which the mass of an electron is me and the Thomson scattering cross-section is

σT , we can calculate the Eddington luminosity as follows:

LEdd =
4πGMmec

σT

where σT ≈ 6.65 × 10−25 m2 is the effective area that quantifies the likelihood of an electron scattering a

photon through Thomson scattering.

14.14 Cosmic Distance Ladder

14.14.1 Introduction

The cosmic distance ladder is a succession of methods by which astronomers determine the distances to

celestial objects. Each rung of the ladder provides information that allows calibration of the next method,

enabling measurements from the Solar System to the edge of the observable universe.
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RADAR & Parallax

0.001–1000 parsecs

Direct geometric methods

Standard Candles: Cepheids & RR Lyrae

1–30 Mpc

Pulsating variable stars with period-luminosity relationship

Tully-Fisher & Faber-Jackson Relations

10–200 Mpc

Galaxy luminosity correlated with rotation speed/velocity dispersion

Type Ia Supernovae

100–1000 Mpc

”Standardizable” candles from white dwarf explosions

Hubble’s Law

>100 Mpc

Cosmological redshift-distance relation

Calibrates

Calibrates

Calibrates

Calibrates

The Cosmic Distance Ladder

Figure 13: The hierarchy of distance measurement techniques in astronomy. Each rung calibrates the
next.

14.14.2 Radar Ranging

For objects within our Solar System, we can use radar to measure distances directly:

• Transmit radio waves toward a planet or asteroid

• Measure time delay for echo to return: ∆t

• Distance: d =
c ·∆t
2

where c is the speed of light

• Limited to ∼10 AU (within Solar System)
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14.14.3 Stellar Parallax

Parallax uses Earth’s orbit as a baseline to measure distances to nearby stars:

d(parsecs) = 1

θ(arcseconds)

where

• d = distance in parsecs (1 pc ≈ 3.26 light-years)

• θ = parallax angle in arcseconds

• Baseline = 1 AU (astronomical unit)

14.14.4 Standard Candles: Cepheid Variables

Stellar Variability Stellar variability is classified into two broad categories:

1. Regular Variability:

• Pulsating Stars: These stars, such as Cepheid variables, exhibit periodic changes in brightness

due to expansions and contractions of their outer layers.

• Eclipsing Binaries: These systems consist of two stars orbiting each other, and their light

curves vary periodically due to one star eclipsing the other.

2. Irregular Variability:

• Flare Stars: These stars exhibit sudden, unpredictable increases in brightness due to magnetic

activity.

• Cataclysmic Variables: These stars experience large variations in brightness due to mass

transfer in binary systems.

Cepheid Variables Cepheid variables are pulsating stars whose period correlates with luminosity:

M = a · log10(P ) + b

where

• M is the absolute magnitude (intrinsic brightness),
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• P is the pulsation period in days, and

• a, b are the calibration constants.

Once the absolute magnitudeM is known from the period, the distance modulus formula gives the distance.

14.14.5 Faber-Jackson Relations

For elliptical galaxies, the velocity dispersion correlates with luminosity:

L ∝ σβ

where

• σ is the stellar velocity dispersion

• β ≈ 4 empirically

log(vrot)

log(L)Tully-Fisher Relation

1 2 3 4
log(σ)

log(L) FJ Relation

1 2 3 4

Figure 14: The Tully-Fisher and Faber-Jackson relations allow estimation of galaxy distances from mea-
surable kinematic properties.

14.14.6 Type Ia Supernovae

Type Ia supernovae are extremely luminous and serve as excellent ”standardizable candles”:

• Result from thermonuclear explosion of white dwarf reaching Chandrasekhar limit (∼1.4 M⊙)

• Peak luminosity: ∼1010 L⊙ (as bright as entire galaxy)

• Can be observed at cosmological distances
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• Light curve shape correlates with peak luminosity (Phillips relationship)

The distance is calculated from

µ = mB −MB + α(s− 1)− βc

where

• µ is the distance modulus

• mB is the apparent magnitude in B-band

• MB is the absolute magnitude (calibrated)

• s is the light curve shape parameter

• c is the color correction

• α, β are the calibration coefficients
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15 Interstellar Medium

15.1 Introduction

The interstellar medium refers to the matter that exists in the space between stars within a galaxy. It

is composed of gas, dust, and cosmic rays.

It can be categorized into several distinct phases based on the temperature and density of the material:

• Neutral Gas: Consists of neutral hydrogen (H) and molecular hydrogen (H2), often found in

molecular clouds.

• Ionized Gas: Composed of ionized hydrogen (H+) and other ionized elements, typically found in

regions such as HII regions.

• Dust: Microscopic solid particles that can range in size from nanometers to microns, contributing

to the absorption and scattering of light.

• Cosmic Rays: High-energy particles, primarily protons and atomic nuclei, that travel through the

ISM.

Some important regions within the interstellar medium include:

• HII Regions: These are regions of ionized hydrogen, created by the ultraviolet radiation from

young, hot stars. They are often observed in emission lines such as Hα.

• Molecular Clouds: These are cold, dense regions of the interstellar medium where molecules such

as H2 are found. They are often the birthplaces of stars.

• Warm Ionized Medium: A diffuse component of the interstellar medium, where the gas is partially

ionized and has a temperature around 104 K.

15.2 Fluid Dynamics

15.2.1 Stress Tensor

In continuum mechanics, the stress tensor σ is a fundamental concept that describes the internal forces

acting within a material or fluid.
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For a general three-dimensional space, the stress tensor σ is a 3× 3 matrix, with components σij where i

and j refer to the directions (or axes) in space:

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


where

• σxx, σyy, σzz are the normal stress components in the x, y, and z directions.

• σxy, σxz, σyz are the shear stress components.

• The matrix is symmetric: σij = σji.

15.2.2 Tensor Product

Definition. 15.1: Tensor Product

Let V andW be vector spaces over a field F. The tensor product V ⊗W is a vector space equipped

with a bilinear map

⊗ : V ×W −→ V ⊗W

satisfying the following universal property: For every bilinear map ϕ : V ×W −→ U to any vector

space U , there exists a unique linear map ϕ̃ : V ⊗ W −→ U such that the following diagram

commutes:
V ×W V ⊗W

U

⊗

ϕ
ϕ̃

Tensor product of two vectors A and B is given by

(A ⊗ B)ij = AiBj
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15.2.3 Divergence Theorem

Theorem. 15.1: Divergence Theorem
ˆ
∂V

F · n dS =

ˆ
V

∇ · F dV

where

• F is a vector field,

• V is the volume enclosed by the surface ∂V ,

• n is the outward-pointing unit normal vector on the surface ∂V , and

• dS is the surface area element on ∂V

15.2.4 Continuity Equation and Momentum Equation

Let ρ(x, t) denote the mass density and v(x, t) the velocity field of a fluid. The total mass within a fixed

control volume V with boundary ∂V and outward unit normal n is

MV (t) =

ˆ
V

ρ dV

The principle of mass conservation states that the rate of change of mass within V equals the negative of

the net mass flux through the boundary:

d

dt

ˆ
V

ρ dV = −
ˆ
∂V

ρ v · n dS

As V is fixed in space, ˆ
V

∂ρ

∂t
dV = −

ˆ
∂V

ρ v · n dS

By the divergence theorem, ˆ
V

∂ρ

∂t
dV = −

ˆ
V

∇ · (ρv) dV

Hence, ˆ
V

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0
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As V is arbitrary, the integrand must vanish everywhere and

∂ρ

∂t
+∇ · (ρv) = 0

which is the local form of continuity equation.

By the material derivative D/Dt = ∂/∂t+ v · ∇,

Dρ

Dt
+ ρ∇ · v = 0

Consider the momentum of fluid within a fixed control volume V :

ˆ
V

ρv dV

d

dt

ˆ
V

ρv dV = −
ˆ
∂V

ρv(v · n) dS +

ˆ
∂V

σ · n dS +

ˆ
V

ρf dV

where

• σ is the stress tensor,

• f is the body force per unit mass (e.g. gravity).

Using the divergence theorem,

ˆ
∂V

ρv(v · n) dS =

ˆ
V

∇ · (ρv ⊗ v) dV,
ˆ
∂V

σ · n dS =

ˆ
V

∇ · σ dV

Therefore, ˆ
V

(
∂

∂t
(ρv) +∇ · (ρv ⊗ v)−∇ · σ − ρf

)
dV = 0

As V is arbitrary,
∂

∂t
(ρv) +∇ · (ρv ⊗ v) = ∇ · σ + ρf

which is the Cauchy momentum equation in conservation form. Using the continuity equation, it

can be rewritten in material-derivative form:

ρ
Dv
Dt

= ∇ · σ + ρf
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15.2.5 Euler’s Equation (Special Case of Navier-Stokes Equation)

From
∂

∂t
(ρv) +∇ · (ρv ⊗ v) = ∇ · σ + ρf

where ρ is the density of the fluid, v is the velocity of the fluid, σ is the stress tensor, and f represents

external body forces per unit mass.
∂

∂t
(ρv) = ρ

∂v
∂t

+ v∂ρ
∂t

∇ · (ρv ⊗ v) = v · ∇(ρv) = v · ∇(ρ)v + ρv · ∇v

For an inviscid fluid (no viscosity), the stress tensor only contains the pressure term:

σ = −pI

where p is the pressure and I is the identity matrix. The divergence of the stress tensor is

∇ · σ = −∇p

ρ
∂v
∂t

+ v∂ρ
∂t

+ v · ∇ρv + ρv · ∇v = −∇p+ ρf

For an incompressible flow (constant ρ):

∂ρ

∂t
= 0 and ∇ρ = 0

This implies that the terms v∂ρ
∂t

and v · ∇ρv vanish. Hence,

ρ
∂v
∂t

+ ρv · ∇v = −∇p+ ρf

∂v
∂t

+ v · ∇v = −1

ρ
∇p+ f
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15.3 Case Study

15.3.1 Background

The interstellar medium consists of gas and dust at various densities and temperatures, organized into

molecular clouds, atomic gas, and ionized phases. Gravitational collapse occurs when self-gravity over-

comes pressure support, leading to star formation. The interstellar medium exhibits a wide range of

densities:

Phase Density, ρ (g cm−3) Collapse Timescale, tff

Molecular Cloud (diffuse) 4.2× 10−22 ∼ 107 yr

Molecular Cloud (dense core) 4.2× 10−20 ∼ 106 yr

Atomic HI Cloud 4.2× 10−24 ∼ 108 yr

HII Region 4.2× 10−25 ∼ 109 yr

15.3.2 Derivation

• Continuity equation (mass conservation):

∂ρ

∂t
+∇ · (ρv) = 0

• Euler equation (momentum conservation):

∂v
∂t

+ (v · ∇)v = −1

ρ
∇p−∇Φ

• Poisson equation for the gravitational potential where ∇2f = ∇ · (∇f) and ∇2Φ = f :

∇2Φ = 4πGρ

Consider an uniform background:

ρ = ρ0 + δρ, v = δv, p = p0 + δp, Φ = Φ0 + δΦ

To isolate pure gravitational collapse, we consider the pressure-less limit:
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• Linearized continuity equation:
∂δρ

∂t
+ ρ0∇ · δv = 0

• Linearized Euler equation (no pressure):

∂δv
∂t

= −∇δΦ

• Linearized Poisson equation:

∇2δΦ = 4πG δρ

Therefore,
∂

∂t
(∇ · δv) = −∇2δΦ

and then
∂

∂t
(∇ · δv) = −4πG δρ

Also,
∂2δρ

∂t2
+ ρ0

∂

∂t
(∇ · δv) = 0

Finally,
∂2δρ

∂t2
+ ρ0 [−4πG δρ] = 0

Hence,
∂2δρ

∂t2
= 4πGρ0 δρ

which is in the form of δ̈ρ = ω2δρ with

ω2 ≡ 4πGρ0 > 0

The eωt mode represents exponential growth of density perturbations which represent gravitational collapse.

The e−ωt mode decays and is typically not physically relevant for collapse initial conditions. The e-folding

time (characteristic growth/collapse timescale) is

τ ≡ 1

ω
=

1√
4πGρ0

∼ 1√
Gρ0
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16 Study of the Earth

16.1 Tides

Tides are the periodic rise and fall of sea levels caused by the gravitational forces exerted by the Moon

and the Sun on Earth.

Figure 15: Source: https://www.britannica.com/science/tide

16.2 Seasons

Seasons are caused by the tilt of Earth’s axis (23.5◦) relative to its orbit around the Sun.

• Summer occurs in the hemisphere tilted toward the Sun.

• Winter occurs in the hemisphere tilted away from the Sun.

• Spring and Autumn occur when neither hemisphere is tilted toward the Sun.

June 21

A

B

September 22

December 21

C

March 21

D
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16.3 Factors Influencing Climate

Climate depends on several natural factors:

• Latitude: Distance from the equator affects temperature.

• Altitude: Higher altitudes are cooler.

• Ocean Currents: Warm or cold currents can affect coastal climates.

• Topography: Mountains can block winds and affect rainfall.

• Human Activities: Urbanization and greenhouse gases influence climate.

16.4 Eclipses

16.4.1 Solar Eclipse

It occurs when the Moon comes between the Earth and Sun, blocking sunlight.

16.4.2 Lunar Eclipse

It occurs when the Earth comes between the Sun and Moon, casting a shadow on the Moon.

16.5 Space Weather

16.5.1 Introduction

Space weather refers to the dynamic conditions in Earth’s space environment, primarily influenced by the

Sun.

16.5.2 Solar Wind

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the

corona. It affects the Earth’s magnetosphere and can disrupt satellite communications.

16.5.3 Solar Flares

Solar flares are sudden bursts of radiation from the Sun. They release energy across the electromagnetic

spectrum, which can impact radio communications and GPS systems on Earth.
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16.5.4 Coronal Mass Ejections (CMEs)

CMEs are massive bursts of solar wind and magnetic fields rising above the solar corona. They can trigger

geomagnetic storms that affect satellites, power grids, and auroras.

16.5.5 Aurorae

Aurorae (Northern and Southern Lights) are caused by charged particles from the Sun interacting with

Earth’s magnetic field and atmosphere.

16.6 Meteor Showers

Meteor showers occur when Earth passes through the debris left by a comet.

16.7 Equinoxes

An equinox occurs twice a year, when the Sun crosses the celestial equator. On these dates, day and

night are approximately equal in length at all latitudes. The two equinoxes are:

• Vernal Equinox: Occurs around March 20th or 21st, marking the start of spring in the northern

hemisphere.

• Autumnal Equinox: Occurs around September 22nd or 23rd, marking the start of autumn in the

northern hemisphere.

At the equinoxes, the Sun rises directly in the east and sets directly in the west.

16.8 Solstices

A solstice occurs twice a year when the Sun reaches its highest or lowest point in the sky at noon, relative

to the celestial equator. This results in the longest and shortest days of the year.

• Summer Solstice: Occurs around June 21st or 22nd. The Sun is at its northernmost point,

resulting in the longest day of the year in the northern hemisphere and the shortest day in the

southern hemisphere.

• Winter Solstice: Occurs around December 21st or 22nd. The Sun is at its southernmost point,

resulting in the shortest day of the year in the northern hemisphere and the longest day in the

southern hemisphere.
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16.9 Solar Declination

Solar declination is the angle between the rays of the Sun and the plane of the Earth’s equator. It varies

throughout the year, reaching +23.5◦ during the summer solstice and −23.5◦ during the winter solstice.

At the equinoxes, the solar declination is 0◦, meaning the Sun is directly above the equator.

17 Study of the Moon

17.1 Precession

Precession is the slow, conical motion of the Earth’s rotation axis caused primarily by the gravitational

torque of the Sun and Moon on Earth’s equatorial bulge.

Rate of precession ≈ 50.3′′ per year

Proof. Consider the Earth as an oblate spheroid with equatorial radius Re and polar radius Rp. The

Earth’s equatorial bulge experiences a gravitational torque due to the Sun (or Moon):

τ = r × F

The magnitude of the torque is proportional to the Earth’s moment of inertia difference and the gravita-

tional force:

τ ≈ 3GMs

2r3
(C − A) sin 2θ

where

• G is the gravitational constant,

• Ms is the mass of the Sun,

• r is the Earth-Sun distance,

• C and A are the Earth’s principal moments of inertia about polar and equatorial axes respectively,

and

• θ is the obliquity of the ecliptic (≈ 23.5◦).
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The precessional angular velocity Ωp is given by the ratio of the torque to the Earth’s spin angular

momentum L = Cω:

Ωp =
τ

Cω
=

3GMs

2r3
C − A

Cω
cos θ

Here, ω is the Earth’s spin angular velocity. The cos θ factor appears due to the component of torque

perpendicular to the spin axis. For an oblate Earth,

C − A =
2

5
MeR

2
eJ2

where

• Me is the Earth’s mass,

• J2 ≈ 1.0826× 10−3 is the dynamical flattening coefficient.

The precessional angular velocity becomes

Ωp =
3GMs

2r3
·

2
5
MeR

2
eJ2

Cω
cos θ

Using C ≈ 2

5
MeR

2
e, we simplify:

Ωp ≈
3GMs

2r3ω
J2 cos θ

Substitute the values

G = 6.674× 10−11 m3kg−1s−2

Ms = 1.989× 1030 kg

r = 1.496× 1011 m

ω = 7.292× 10−5 rad/s

J2 = 1.0826× 10−3

θ = 23.5◦

Rate of precession = Ωp × 206264.8′′ × 3.156× 107 s/year ≈ 50.3′′/year
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17.2 Nutation

Nutation refers to small periodic oscillations superimposed on the precessional motion. These are caused

by the varying positions of the Moon and Sun relative to Earth, leading to deviations in the tilt of Earth’s

axis.

17.3 Libration

Libration is the apparent oscillation of the Moon that allows observers on Earth to see slightly more than

half of its surface over time. There are three main types:

• Longitudinal libration: Due to the eccentricity of the Moon’s orbit.

• Latitudinal libration: Due to the tilt of the Moon’s axis relative to its orbital plane.

• Diurnal libration: Due to the rotation of the Earth and the observer’s changing viewpoint.

18 Study of the Solar System

18.1 Formation

The Solar System formed about 4.6 billion years ago from a giant molecular cloud composed of gas and

dust. The process can be divided into several stages.

18.1.1 Nebular Hypothesis

The nebular hypothesis explains that the Solar System formed from a rotating disk of gas and dust. This

cloud, known as the solar nebula, collapsed under its own gravity, leading to the formation of the Sun

at its center and the planets from the remaining material. The key stages in the formation of the Solar

System are as follows:P

1. Collapse of the Solar Nebula: The gas and dust cloud began to contract due to gravity. As it

contracted, it started to rotate faster, forming a flat, rotating disk.

2. Formation of the Sun: At the center of the disk, the temperature and pressure increased, leading

to nuclear fusion, which ignited the Sun.
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3. Accretion of Planets: In the outer regions of the disk, dust and gas began to clump together

to form planetesimals, which further collided and merged to form planets, moons, and other small

bodies.

4. Clearing the Nebula: The young Sun’s solar wind cleared away the remaining gas and dust,

leaving behind the current structure of the Solar System.

18.1.2 Differentiation and Evolution

After the initial formation, the Solar System underwent several evolutionary processes:

• Differentiation: The early planets were molten, and heavier materials sank toward their cores

while lighter materials rose to the surface.

• Late Heavy Bombardment: During the early stages, the planets were frequently bombarded by

leftover planetesimals, causing cratering on their surfaces.

• Orbital Evolution: Gravitational interactions between planets and other bodies in the Solar System

led to changes in their orbits over time.

18.2 Structure and Components of the Solar System

The Solar System is composed of the Sun and all the objects that are bound by its gravitational field,

including planets, moons, asteroids, comets, and other small bodies.

18.2.1 The Sun

The Sun is the central star of the Solar System, providing the gravitational force that holds the system

together. It is composed primarily of hydrogen and helium and accounts for approximately 99.86% of the

total mass of the Solar System. The Sun’s core is where nuclear fusion occurs, generating the energy that

powers the Sun and supports life on Earth.

18.2.2 Planets

The modern scientific definition of a planet was formally established by the International Astronomical

Union (IAU) in 2006. According to the IAU, a celestial body is classified as a planet if it satisfies all of

the following three criteria:
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• It orbits the Sun. The object must revolve around the Sun, distinguishing planets of the Solar

System from moons, which orbit planets, and from extrasolar (exoplanetary) systems.

• It has sufficient mass for its self-gravity to overcome rigid body forces, so that it assumes

hydrostatic equilibrium (a nearly round shape). This condition ensures that the object is

massive enough for gravity to shape it into a roughly spherical form.

• It has cleared the neighbourhood around its orbit. The object must be gravitationally

dominant in its orbital region, meaning it has either accreted or scattered most other bodies of

comparable size near its orbit.

An object that meets the first two criteria but has not cleared its orbital neighbourhood is classified as a

dwarf planet (e.g. Pluto, Ceres, and Eris). There are eight planets in the Solar System, divided into two

main categories:

Terrestrial Planets The terrestrial planets are rocky bodies with solid surfaces and relatively high

densities. They are located in the inner Solar System:

• Mercury

• Venus

• Earth

• Mars

These planets are characterized by thin or moderate atmospheres, slow rotation rates compared to gas

giants, and a composition dominated by silicate rocks and metals.

Gas Giants and Ice Giants The giant planets are large, massive planets with thick atmospheres and

no well-defined solid surfaces. They are further divided into gas giants and ice giants:

• Gas giants: Jupiter, Saturn

• Ice giants: Uranus, Neptune

Giant planets possess strong gravitational fields, extensive systems of moons, and prominent ring systems.
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18.2.3 Smaller Bodies

The Solar System also contains numerous smaller bodies, including

• Asteroids: Rocky bodies that primarily orbit between Mars and Jupiter in the asteroid belt.

• Comets: Icy bodies that often have highly elliptical orbits, and develop tails when they approach

the Sun.

• Meteoroids: Small fragments of asteroids or comets that can enter Earth’s atmosphere and cause

meteor showers.

18.2.4 Kuiper Belt and Oort Cloud

The outer regions of the Solar System are populated by icy bodies and dwarf planets:

• Kuiper Belt: A region beyond Neptune that contains icy bodies, including dwarf planets like Pluto.

• Oort Cloud: A hypothetical cloud of icy bodies that is believed to surround the Solar System at

great distances, thought to be the source of long-period comets.

19 Study of the Sun

19.1 Composition

The Sun is primarily composed of hydrogen and helium, with trace amounts of heavier elements. Hydrogen

nuclei (protons) undergo nuclear fusion in the solar core:

4p −→ 4He+ 2e+ + 2νe + γ + 26.7 MeV

powering the Sun through the proton-proton chain.

19.2 Internal Structure

1. Core:

• Radius: ∼ 0.2 R⊙

• Site of nuclear fusion: 4p −→ 4He+ 2e+ + 2νe + 26.7 MeV
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• Temperature: ∼ 1.5× 107 K

2. Radiative Zone:

• Energy transported by radiation

• Temperature gradient decreases outward

3. Convective Zone:

• Energy transported by convection

• Outer ∼ 30% of Sun’s radius

• Convection cells cause granulation on the photosphere

19.3 Atmosphere

• Photosphere: Visible surface; T ∼ 5800 K

• Chromosphere: Above photosphere; hotter than photosphere; T ∼ 104 K

• Corona: Outermost layer; T ∼ 106 K; source of solar wind

19.4 Solar Surface Activities

19.4.1 Sunspots

Sunspots are temporary dark regions on the solar photosphere (visible surface of the Sun) caused by strong

magnetic fields.

19.4.2 Solar Wind

The solar wind is a continuous outflow of plasma from the solar corona. The solar wind consists mainly of

• Protons (p+)

• Electrons (e−)

• Alpha particles (α = 4He2+)
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The solar corona has high temperature (T ∼ 1× 106 K). The sound speed is

cs ∼

√
kBT

mp

As the corona cannot remain static with such high thermal pressure, the plasma expands outward, forming

the solar wind. Plasma is often called the fourth state of matter. It is a fully or partially ionized gas,

meaning that a significant fraction of the atoms or molecules are electrically charged (ions and electrons).

The heliosphere is the region of space dominated by the solar wind and the Sun’s magnetic field, extending

well beyond the orbit of Pluto.

The magnetosphere is the region around a planet where the planetary magnetic field dominates the

motion of charged particles, protecting the planet from the solar wind.

19.5 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the physical theory that describes the dynamics of electrically conduct-

ing fluids in the presence of magnetic fields. Such fluids include plasmas, liquid metals, and saltwater.

MHD combines principles from:

• Fluid dynamics (Navier–Stokes equations),

• Electromagnetism (Maxwell’s equations), and

• Thermodynamics

In the MHD approximation, the plasma is treated as a single conducting fluid rather than as separate ions

and electrons. This approximation is valid when the characteristic length scales are much larger than the

particle mean free paths and the Debye length. The basic set of ideal MHD equations consists of:

∂ρ

∂t
+∇ · (ρv) = 0

where ρ is the mass density and v is the fluid velocity.

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+ J × B + ρg
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where p is the gas pressure, B is the magnetic field, J is the current density, and g is the gravitational

acceleration.
∂B
∂t

= ∇× (v × B)−∇× (η∇× B)

where η is the magnetic diffusivity. In ideal MHD, η = 0.

∇ · B = 0

which expresses the absence of magnetic monopoles. The Sun is composed primarily of ionized hydrogen

and helium, making it an excellent example of a natural MHD system. Different layers of the Sun exhibit

different MHD behaviors:

• Solar interior: Dense plasma with strong coupling between flow and magnetic fields.

• Photosphere and chromosphere: Visible surface where magnetic structures emerge.

• Corona: Extremely hot, low-density plasma dominated by magnetic forces.

The Sun possesses a large-scale magnetic field generated by a solar dynamo. This dynamo operates in

the convection zone and is driven by

• Differential rotation,

• Turbulent convective motions,

• Plasma conductivity.

MHD equations describe how plasma flows stretch, twist, and amplify magnetic field lines, converting

kinetic energy into magnetic energy. Sunspots are regions of strong magnetic fields that inhibit convective

heat transport. In MHD terms, the magnetic pressure

pmag =
B2

2µ0

partially balances the gas pressure, leading to cooler and darker regions on the solar surface. Solar flares

and coronal mass ejections (CMEs) are dramatic manifestations of MHD processes. They are powered by

magnetic reconnection, a non-ideal MHD process in which magnetic field lines break and reconnect,

rapidly releasing stored magnetic energy. This energy is converted into

• Thermal heating,
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• Particle acceleration,

• Electromagnetic radiation.

MHD predicts the existence of wave modes in magnetized plasmas. One important example is the Alfvén

wave, which propagates along magnetic field lines with speed

vA =
B

√
µ0ρ

Proof. Consider an ideal, perfectly conducting plasma with uniform background magnetic field B0 = B0ẑ,

uniform mass density ρ, no background flow (v0 = 0), and small perturbations in velocity and magnetic

field. The governing equations are

ρ
∂v
∂t

= −∇p+ J × B

For incompressible, transverse perturbations, pressure gradients can be neglected, giving

ρ
∂v
∂t

= J × B

By Ampère’s law neglecting displacement current,

J =
1

µ0

∇× B

Note that
∂B
∂t

= ∇× (v × B)

Page 240 / 259



19 STUDY OF THE SUN By Pika and Owen

By Faraday’s law,

∇× E = −∂B
∂t

By Gauss’s law,

∇ · B = 0

In magnetohydrodynamics, the generalized Ohm’s law is

E + v × B = ηJ

where η is the resistivity. For an ideal conductor (η = 0), this reduces to

E = −v × B

Substitute E = −v × B into Faraday’s law:

∇× (−v × B) = −∂B
∂t

Rearranging gives
∂B
∂t

= ∇× (v × B)

Let the magnetic field and velocity be written as

B = B0 + b, v = v1

where b and v1 are small perturbations. To first order, the equation of motion becomes

ρ
∂v1

∂t
=

1

µ0

(∇× b)× B0

The linearized induction equation is
∂b
∂t

= ∇× (v1 × B0)

Take the time derivative of the equation of motion:

ρ
∂2v1

∂t2
=

1

µ0

(
∇× ∂b

∂t

)
× B0
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Substitute the induction equation:

ρ
∂2v1

∂t2
=

1

µ0

[∇× (∇× (v1 × B0))]× B0

For transverse waves propagating along B0 (take ∂/∂z 6= 0 only), this simplifies to

∂2v1

∂t2
=

B2
0

µ0ρ

∂2v1

∂z2

The above equation is a standard wave equation of the form

∂2v1

∂t2
= v2A

∂2v1

∂z2

from which we identify the Alfvén speed as

vA =
B0√
µ0ρ

20 Human and Robotic Exploration within the Solar System

20.1 Human Exploration of the Solar System

Human exploration of the Solar System involves sending astronauts beyond Earth to explore, study, and

potentially inhabit other celestial bodies.

• Purpose: advancing scientific knowledge, developing space technology, inspiring societies, and en-

suring long-term survival of humanity.

• Major challenges: long-duration exposure to microgravity, cosmic radiation, limited medical sup-

port, psychological isolation, and safe re-entry.

• Key destinations: the Moon for testing technologies, Mars for long-term exploration, and near-

Earth asteroids for scientific and resource studies.

• Approach: step-by-step expansion using space stations, lunar missions, and sustainable life-support

systems.
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20.2 Planetary Missions

Planetary missions are robotic or crewed missions designed to explore planets, moons, asteroids, and

comets.

• Flyby missions: provide brief but valuable observations with minimal fuel and mission complexity.

• Orbiter missions: allow long-term monitoring, global mapping, and atmospheric studies.

• Landers and rovers: enable direct surface analysis, geology, and chemical investigations, but

require complex entry, descent, and landing systems.

• Scientific value: reveal planetary formation history, climate evolution, and potential habitability.
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Part II: Data Analysis

21 Probability

21.1 Introduction

The probability of an event A is a number between 0 and 1 that represents the likelihood of the event

occurring. It is defined as

P (A) =
Number of favorable outcomes

Total number of possible outcomes

For example, the probability of getting heads in a fair coin toss is:

P (Heads) = 1

2

The probability of the complement of an event A, denoted as Ac, is:

P (Ac) = 1− P (A)

For example, if P (Heads) = 1

2
, then the probability of getting tails, P (Tails) = 1

2
.

The probability of event A occurring given that event B has occurred is called conditional probability and

is denoted as P (A|B). It is given by

P (A|B) =
P (A ∩B)

P (B)

This is the probability of A given B, assuming P (B) > 0.

21.2 Random Variables

A random variable is a numerical outcome of a random phenomenon. It can be classified as either discrete

or continuous:

• Discrete Random Variable: Takes distinct values (e.g., number of heads in 10 coin tosses).

• Continuous Random Variable: Takes any value within a given range (e.g., height of individuals).
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The probability mass function (PMF) gives the probability of each possible outcome for discrete random

variables. For example, the PMF of a fair die roll (with outcomes 1, 2, 3, 4, 5, 6) is

P (X = x) =
1

6
, x ∈ {1, 2, 3, 4, 5, 6}

The probability density function (PDF) is used for continuous random variables. The probability that a

continuous random variable X takes a value in the interval [a, b] is given by the integral of the PDF over

that interval:

P (a ≤ X ≤ b) =

ˆ b

a

fX(x) dx

where fX(x) is the PDF of X.

22 Linear and Logarithmic Scale

In a linear scale, the distance between points is the same for each increment. The axis values increase by

a constant amount.

In a logarithmic scale, the distance between values is proportional to the logarithm of the values:

2 3 4 5

101

102

103

104

x

y

Example
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23 Measure of Central Tendancy

Definition. 23.1: Mean

The mean x̄ is the sum of all values divided by the number of observations. For a sample of size n,

x̄ =
1

n

n∑
i=1

xi

Definition. 23.2: Median

The median is the middle value when the data is ordered from least to greatest.

• If n is odd: The median is the value at position n+ 1

2
.

• If n is even: The median is the average of the two middle values.

Definition. 23.3: Mode

The mode is the value that appears most frequently in the dataset.

24 Measure of Dispersion

24.1 Basic Concepts

Definition. 24.1: Quartile

Quartiles are statistical measures that divide an ordered dataset into four equal parts. They help

describe the spread and distribution of the data. The three quartiles are:

Q1 (first quartile), Q2 (second quartile or median), Q3 (third quartile)

These quartiles divide the data into four segments, each containing 25% of the observations.

Definition. 24.2: Standard Deviation

Standard deviation is a measure of the spread or dispersion of a set of numerical data. It tells us how

much the values deviate, on average, from the mean (average). A small standard deviation indicates

that the data points are clustered close to the mean, while a large standard deviation indicates that
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the data are spread out. For the data points

x1, x2, x3, . . . , xN

the standard deviation is defined as

σ =

√√√√ 1

N

N∑
i=1

(xi − x̄)2

24.2 Box Plots (Box-and-Whisker)

A box plot is a graphical method for displaying the distribution of numerical data using five key summary

values:

Min
Q1 Median (Q2) Q3

Max

IQR

25 Full Width at Half Maximum

FWHM is the width of a curve measured at half of its maximum amplitude.

−3 −2 −1 1 2 3

Max

Max/2 FWHM

x

Example. For Gaussian function

f(x) = Ae−
(x−µ)2

2σ2

where
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• A is the amplitude (maximum value) of the Gaussian,

• µ is the mean (center) of the distribution,

• σ is the standard deviation (width) of the distribution.

From

Ae−
(x−µ)2

2σ2 =
A

2

e−
(x−µ)2

2σ2 =
1

2

−(x− µ)2

2σ2
= ln 1

2
= − ln 2

(x− µ)2 = 2σ2 ln 2

The points x1 and x2 are

x = µ± σ
√
2 ln 2

Therefore, the FWHM is

FWHM = x2 − x1 = 2σ
√
2 ln 2

26 Error Analysis

In experimental measurements, quantities have uncertainties or errors. If a function depends on multiple

variables:

z = f(x, y, . . . )

and x, y, . . . have uncertainties ∆x,∆y, . . . , then the approximate uncertainty in z is

∆z ≈

√(
∂z

∂x
∆x

)2

+

(
∂z

∂y
∆y

)2

+ . . .
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27 Regression Analysis

27.1 Linear regression

27.1.1 Introduction

Linear regression is a fundamental supervised learning algorithm used to model the relationship between

a scalar response (dependent variable, Y ) and one or more explanatory variables (independent

variables, X). For simple linear regression (one independent variable), the relationship is modeled by

a straight line:

ŷ = β0 + β1x

Where ŷ is the predicted response, x is the independent variable, β0 is the intercept, and β1 is the slope.

27.1.2 Least Squares Method

The goal is to find the optimal coefficients (β0, β1) that make the line best fit the observed data points

(xi, yi). The best fit is defined by the least squares method, which minimizes the sum of the squares of

the residuals (errors).

Definition. 27.1: Residual

A residual, ei, for the i-th data point is the difference between the actual value yi and the predicted

value ŷi:

ei = yi − ŷi = yi − (β0 + β1xi)

Definition. 27.2: Cost Function

The cost function, J(β0, β1), is the quantity we want to minimize:

J(β0, β1) =
n∑

i=1

e2i =
n∑

i=1

(yi − (β0 + β1xi))
2

Theorem. 27.1: Linear Regression

To find the minimum of J(β0, β1), we set the partial derivatives with respect to β0 and β1 to zero.

This leads to the following solutions for the optimal coefficients, β̂0 and β̂1:
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• The optimal slope coefficient is given by

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

• The optimal intercept coefficient is then found using the fact that the regression line must pass

through the point of means (x̄, ȳ):

β̂0 = ȳ − β̂1x̄

27.2 Nonlinear Regression

Nonlinear regression aims to fit a curve to data where the relationship between variables is not linear.

While computers can do this accurately, it is possible to get an approximate fit manually using eyes and

pen.

x

y

Draw a smooth curve that visually passes as close as possible to all points. Adjust the shape until it

captures the overall trend.
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Part III: Observational Astronomy

28 Instrumentation and Space Technologies

28.1 Telescope

28.1.1 Type of Telescope

Optical Telescope Refracting telescope uses lenses to bend (refract) light to a focal point.

• Advantages: Sealed tube, no central obstruction, good for planetary observation

• Disadvantages: Chromatic aberration, size limitations, expensive

• Structure: Objective lens −→ Tube −→ Eyepiece

Reflecting telescope uses mirrors to reflect light to a focal point.

• Types by Optical Design:

1. Newtonian: Primary parabolic mirror and flat secondary diagonal

2. Cassegrain: Primary hyperbolic and secondary convex mirror

3. Ritchey-Chrétien: Both mirrors hyperbolic (no spherical aberration)

4. Nasmyth: Light directed to side of telescope

• Advantages: No chromatic aberration, easier to make large apertures

• Disadvantages: Central obstruction, coma in some designs

Radio Telescopes Radio telescopes collect radio waves using large parabolic dishes or arrays.

• Examples: Arecibo (305 m), FAST (500 m), ALMA (array)

• Components: Dish, feed antenna, receiver, amplifier, recorder
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Mount Type Advantages Disadvantages
Altazimuth Simple, compact Field rotation
Equatorial Natural tracking Complex, heavy

Fork Stable for Cassegrains Limited sky access
German Equatorial Good balance Meridian flip required

Table 9: Comparison of telescope mount types

28.1.2 Mount Types

28.1.3 Key Components

1. Primary Mirror/Objective: Main light-gathering element

2. Secondary Mirror: Redirects light path (in reflectors)

3. Focuser: Adjusts position of eyepiece or instrument

4. Eyepiece/Instrument: Final light analysis

5. Mount: Supports and points the telescope

6. Drive System: Tracks celestial objects

28.1.4 Linear Magnification

The magnification of a telescope is the factor by which the telescope increases the apparent size of an

object. It is given by

M =
fobj

feye

where fobj is the focal length of the objective lens or mirror and feye is the focal length of the eyepiece.

28.1.5 Angular Magnification

Consider an object of height h placed at a distance D from the eye. The angle θ subtended at the eye

(called the visual angle) is

θ ≈ tan θ = h

D
(θ � 1)

The approximation tan θ ≈ θ is valid for small angles (measured in radians), which is typical in optical

systems.
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Angular magnification M is defined as

M =
θ′

θ

where

• θ′ is the angle subtended at the eye when viewing the object through the lens,

• θ is the angle subtended at the eye when viewing the object directly (unaided eye).

28.1.6 Chromatic Aberration

Chromatic aberration is an optical defect of lenses that arises due to the dispersion of light. It occurs

because the refractive index of lens material depends on the wavelength of light.

The refractive index n of a transparent medium is a function of wavelength λ:

n = n(λ)

In general, shorter wavelengths (violet light) experience a higher refractive index than longer wavelengths

(red light):

nviolet > nred

The focal length f of a thin lens is given by the lens maker’s formula (for thin lens)

1

f
= (n− 1)

(
1

R1

− 1

R2

)

Since n depends on λ, the focal length also depends on wavelength:

f = f(λ)

Hence, different colors of light are brought to focus at different positions along the optical axis.

28.1.7 f-number

The focal ratio (or f -number) is the ratio of the telescope’s focal length f to the diameter D of the

aperture:

f/# =
f

D

Page 253 / 259



28 INSTRUMENTATION AND SPACE TECHNOLOGIES By Pika and Owen

A smaller focal ratio corresponds to a wider field of view and faster exposure times, which is important

for observing faint objects.

28.1.8 Light-gathering Power

The light-gathering power of a telescope is its ability to collect light from an astronomical object. This

is important because the more light a telescope can gather, the fainter objects it can detect. The light-

gathering power is proportional to the area of the telescope’s aperture, A, which is typically circular. The

formula for the area of a circular aperture is

A = π

(
D

2

)2

where D is the diameter of the aperture. Therefore, the light-gathering power is proportional to the square

of the aperture diameter:

L ∝ D2

This relationship means that a telescope with a larger aperture collects more light, allowing for observations

of fainter objects.

28.1.9 Adaptive Optics

Adaptive optics is a technology used to improve the performance of optical systems by compensating

for distortions caused by the Earth’s atmosphere. These distortions, known as atmospheric turbulence,

can blur images taken with ground-based telescopes. Adaptive optics systems use deformable mirrors to

correct for these distortions in real-time. The process involves

1. A guide star or laser is used to create a reference point in the sky.

2. A wavefront sensor measures the distortion of the light coming from the guide star.

3. A computer calculates the necessary corrections to the wavefront.

4. A deformable mirror adjusts the light path, compensating for the distortion.

The result is sharper images with significantly reduced atmospheric distortion.
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28.1.10 Artificial Light

Artificial light pollution affects astronomical observations, particularly in urban areas. The brightness of

the night sky due to artificial lighting can drown out faint celestial objects, making it harder to observe

stars, planets, and galaxies. Efforts such as light pollution mitigation are crucial for preserving the

quality of astronomical observations.

28.2 Interferometer

Geometric Model of a Two-Element Interferometer A two-element interferometer uses two tele-

scopes to observe the same astronomical object simultaneously. The signals from the two telescopes are

combined, and the interference pattern is analyzed to extract higher resolution data than a single telescope

could provide. For two telescopes separated by a distance D, the resolution of the interferometer is related

to the wavelength λ of the observed light and the baseline D by the following formula for the angular

resolution θ:

θ ∼ λ

D

Aperture Synthesis Aperture synthesis is a technique used in radio astronomy and interferometry to

create an image with the resolution of an aperture much larger than the physical size of the telescope. The

method involves observing the same object with multiple telescopes at different positions and combining

the data to simulate the effect of a much larger telescope.

The resolution of a synthetic aperture is determined by the maximum separation between the telescopes,

referred to as the baseline. By changing the positions of the telescopes, astronomers can collect data at

multiple baselines, which allows them to improve the resolution over time.

28.3 Detector

28.3.1 Photometers

A photometer measures the intensity of light from a source in a specific wavelength band. It typically uses

a single detector element and filters to isolate desired wavelengths.

28.3.2 Charge-Coupled Devices (CCDs)

CCDs are widely used digital detectors that convert photons into electrons and then into a measurable

voltage. They offer high quantum efficiency and the ability to create 2D images. The number of electrons
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generated in a pixel can be calculated as

Ne = Fγ A tQE

where

• Fγ is the photon flux (photons s−1m−2),

• A is the telescope collecting area (m2),

• t is the exposure time (s),

• QE is the quantum efficiency of the detector.

28.4 Plate Scale

28.4.1 Introduction

For small angles (where tan θ ≈ θ), the plate scale P for telescope is given by

P =
s

θ
=

1

f

where

• θ is the angular size on sky (radians)

• s is the linear size in focal plane

• f is the telescope focal length

Since astronomers work with arcseconds and millimeters (or microns for pixels):

Parcsec/mm =
206265

fmm

The constant 206,265 comes from:

1 radian =
180

π
× 3600 = 206264.8 arcseconds

For digital detectors like CCDs,

Parcsec/px =
206265× pµm
fmm × 1000
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where pµm is the pixel size in micrometers.

28.4.2 Field of View

The total angular field covered by a detector is

FOVwidth = Nx · Ppx [arcseconds]

FOVheight = Ny · Ppx [arcseconds]

where Nx and Ny are the number of pixels in each dimension.

28.5 Space-Based Instruments

Space-based instruments operate above Earth’s atmosphere to observe the universe with high precision.

• Atmospheric limitations: Earth’s atmosphere absorbs or distorts many wavelengths such as ul-

traviolet, X-ray, and infrared radiation.

• Improved resolution: absence of atmospheric turbulence allows sharper images and more stable

measurements.

• Instrument types: telescopes, spectrometers, particle detectors, and magnetometers.

• Constraints: high cost, limited repair opportunities, and finite operational lifetimes.

28.6 Signal-to-Noise Ratio

28.6.1 Introduction

Signal-to-Noise Ratio (SNR) is a measure of the quality of a signal in the presence of noise. It quantifies

how much the signal stands out from the background noise. High SNR means a clear signal, while low

SNR indicates that noise dominates.

SNR is defined as

SNR =
S

N

where

• S is the signal strength (e.g., number of detected photons from the source),

• N is the noise (e.g. standard deviation of the background).
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28.6.2 Pure Poisson Noise

Definition. 28.1: Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a

number of events occurring in a fixed interval of time or space, given the average number of occur-

rences. It is commonly used to model random events like the number of phone calls received at a

call center, the number of accidents at an intersection, or the number of particles decaying per unit

time. The probability mass function of a Poisson distribution is given by

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, . . .

where

• X is the random variable representing the number of events,

• λ is the average number of occurrences in the given interval (also called the rate or intensity),

• k! is the factorial of k, i.e., k! = k(k − 1)(k − 2) . . . 1.

The Poisson distribution is characterized by the mean and variance both being equal to λ, i.e.,

µ = σ2 = λ

For photon-counting detectors, the dominant noise is often Poisson. If the expected signal is S photons,

then Poisson statistics give

σ =
√
S

Hence,

SNR =
S√
S

=
√
S

28.6.3 Background Noise

Suppose the measurement includes both the object signal S and the background B. The total number of

detected photons is

Stot = S +B

Page 258 / 259



28 INSTRUMENTATION AND SPACE TECHNOLOGIES By Pika and Owen

Poisson statistics give total variance

σ2 = S +B

Hence,

SNR =
S√
S +B

28.6.4 Readout Noise

A CCD or CMOS detector adds readout noise σread per pixel. If npix pixels are used, the read noise

contribution is

σ2
read,tot = npixσ

2
read

The total variance becomes

σ2 = S +B + npixσ
2
read

Hence,

SNR =
S√

S +B + npixσ2
read

28.6.5 Complete Equation

SNR =
S√

S +B + npix

(
1 +

npix

nB

)
(Ns +ND + σ2

read +G2σ2
f )

where

• nB is the background pixels in the image, which correspond to regions with no object or light source.

• Ns represents the signal from the source, representing the number of photons from the object being

observed.

• ND represents the dark noise, which arises from thermally generated electrons in the CCD detector,

even in the absence of light.

• G is the gain of the CCD detector, which relates the number of electrons collected by the pixel to

the digital output recorded by the system.

• σf is the fluctuations or Fano noise, which arises from the statistical nature of electron counting

processes.
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